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Abstract.

1 Introduction

XML [39] is a flexible format that can represent many classes of data: structured
documents with large fragments of marked-up text; homogeneous records such
as those in relational databases; and heterogeneous records with varied struc-
ture and content such as those in object-oriented and hierarchical databases.
XML makes it possible for applications to handle all these classes of data si-
multaneously and to exchange such data in a simple, extensible, and standard
format. One measure of XML’s impact is the proliferation of industry-specific
XML vocabularies [14]. Numerous industry groups, including automotive, health
care, and telecommunications, publish document type definitions (DTDs) and
XML Schemata [40], which specify the format of the XML data to be exchanged
between their applications. Ultimately, the goal is for XML to be the “lingua
franca” of data exchange, making it possible for data to be exchanged regardless
of where it is stored or how it is processed.

For the past (almost) four years, we have been actively involved in defin-
ing XQuery 1.0 [45], a query language for XML designed to meet the diverse
needs of applications that query and exchange XML. XQuery 1.0 and its sister
language XPath 2.0 are designed jointly by members of the World-wide Web
Consortium’s XSLT and XML Query working groups. Group members repre-
sent software vendors, large user communities, and industrial research labs.
Broadly speaking, they represent two major software industries and user com-
munities, each of which significantly influence XQuery’s design and definition.
The “document-processing” community contributes their experience in designing
languages and tools (e.g., editors, formatters, browsers, and text-search engines)
for processing structured documents. In particular, several members helped de-
fine the Standard Generalized Markup Language (SGML), from which XML is
descended. The “database” community contributes their experience in designing
query languages, storage systems, and query engines for data-intensive applica-
tions. In particular, several members helped define SQL [15], the standard query
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language for relational database systems. Each community has also had unique
and sometimes conflicting requirements for XQuery. Document-processing appli-
cations typically require a rich set of text-processing operators and the abilities
to search for text that spans XML markup, to query and preserve the relative
order of XML document fragments, and to rank approximate search results.
Database applications typically require a rich set of operators on atomic types
(e.g., numbers, dates, strings), the ability to compare, extract, and transform
values in large XML databases, and the ability to construct new XML values
that conform to a given schema. Chamberlin gives an excellent overview on these
and other influences on the design of XQuery [9].

XQuery, the result of the collaboration of these two communities, is a typed,
functional language that supports user-defined functions and modules for struc-
turing large queries. It contains XPath 2.0 [44] as a sublanguage. XPath 2.0
supports navigation, selection, and extraction of fragments of XML documents,
and is also an embedded sublanguage of XSLT 2.0 [48]. XQuery also includes
expressions to construct new XML values, and to integrate or join values from
multiple documents.

Interestingly, XQuery has as much in common with modern programming
languages as it does with traditional query languages. User-defined functions
and modules, for example, are not typical features of query languages. XQuery’s
design is also due to the influence of group members with expertise in the design
and implementation of other high-level languages. This smaller “programming
language” community advocated that XQuery have a static type semantics and
that a formal semantics of XQuery be part of the W3C standard. As a result,
XQuery has a complete formal semantics [46], which contains the only complete
definition of XQuery’s static typing rules.

Even though not yet completely specified, XQuery has generated an astound-
ing level of interest from software vendors, potential users, and computer-science
researchers. The XML Query working group Web page3 lists twenty-three pub-
licly announced implementations, many of which are embedded in products that
integrate data from legacy databases. The interest of the database-research com-
munity in XML, and XQuery in particular, is also overwhelming. Every major
database research conference has at least one track on XML and related technolo-
gies, and demonstration sessions are rife with XQuery applications. Numerous
workshops accommodate the overflow of research papers.

One reason for this flood of activity is that semi-structured data, of which
XML is one example, is substantially different than relational data, which has
been the focus of database research for the past twenty years. These differ-
ences challenge most of what database researchers know about storing data and
processing queries. Vianu provides a thorough survey of the theoretical issues
related to semi-structured data, including schema and constraint languages; type
checking of queries; and complexity of query evaluation and checking query con-
tainment [37].

3 http://www.w3.org/XML/Query
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If the response to XML by the database community is a flood, the response by
the programming-language community is more like a babbling brook. Influential
contributions focus on language expressiveness and type checking. XDuce [23]
is a statically typed functional language for XML whose key feature is regular
expression pattern matching over XML trees. The XQuery type system incorpo-
rates some of the structural features of XDuce’s type system, as well as the named
typing features of XML Schema. Siméon and Wadler formalized the semantics of
named typing and establish the relationship between document validation and
type matching in XQuery [34]. Cardelli and Ghelli have proposed a tree-based
logic [7] as a foundation for expressing the semantics of query languages and
schemata for semistructured data. Such a logic can be used to establish the
complexity of problems such as query containment and type checking and thus
influence development of practical algorithms, much as the the first-order logic
serves a foundation for relational query languages. Hosoya and Pierce give a brief
survey of a variety of languages that process XML, with a focus on the expres-
siveness of their type systems and the complexity of type checking [23]. Other
contributions address efficient implementation of document validation [10], XML
parsing [24], and the API between high-level programming languages and XML
documents [13, 30, 38].

1.1 Growing a Language

“If we add just a few things – generic types, operator overloading,
and user-defined types of light weight ... — that are designed to let users
make and add things of their own use, I think we can go a long way, and
much faster. We need to put tools for language growth in the hands of
the users.”

— Guy Steele, “Growing a Language”, 1999 [36]

In other work, we have focused on XQuery’s static type system [17], on
XQuery’s formal semantics [18], and on the relationship between XQuery’s core
language and monads [19]. In this paper, we consider how XQuery may grow from
an already powerful query language for XML into a programming language for
XML-aware applications. History shows that successful query languages do grow,
but often inelegantly. SQL-99 [27] is so large that no implementation supports
the complete standard. As Guy Steele envisioned for Java, our vision is that
XQuery grow elegantly with the addition of several flexible language features
instead of numerous ad-hoc ones. An important open question is what these
features should be.

We begin in Section 2 with the basics of XML and XQuery and present
an example query that integrates data from two XML sources. We focus on
the “query language” characteristics of XQuery in Section 3 and on the “pro-
gramming language” characteristics of XQuery in Section 4. A critical barrier to
XQuery’s growth is identifying efficient evaluation strategies for queries on large
XML data sources. XQuery’s programming-language features make evaluation
even more challenging. To familiarize the reader with these issues, we outline the
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stages of compilation and optimization in an “archetypal” XQuery implemen-
tation in Section 5. In Section 6, we look forward to XQuery 2.0 and describe
some of the features under consideration including update statements, exception
handling, higher-order functions, and parametric polymorphism – features that
require the knowledge and creativity of the programming language community.
Our hope is that this tour will encourage readers to take a closer look at XQuery.

2 XML and XQuery Basics

XML often serves as an exchange format for data that is stored in other represen-
tations (e.g., relational databases, Excel spreadsheets, files with ad-hoc formats,
etc.) or that is generated by application programs (e.g., stock-quote service or
on-line weather service). An application may publish the data it wants to ex-
change as an XML document, or it may provide a query interface that produces
XML. In our examples, we assume the data is published in an XML document.
The example document in Figure 1 contains a book catalog represented in XML.
The document has one top-level catalog element, which contains book elements.

An XML element has a name and may contain zero or more attributes and a
sequence of zero or more properly nested children elements, possibly interleaved
with character data. An attribute has a name and contains a simple value, i.e.,
character data only. The book element contains two attributes: an isbn number
and a year. All of an element’s attributes must have distinct names, but their
order is insignificant – so changing the attributes to year followed by isbn does
not change the element’s value. By contrast, an element’s children may share the
same names, and their relative order is significant. The book element contains
a title element followed by an author, a publisher, a retail price, and a list price.
The review element is an example of mixed content in which character data
is interleaved with elements: The title element is embedded in the text of the
review. This document is well-formed, because its elements are properly nested
and the attributes of each element have unique names.4

XQuery expressions operate on values in the XML data model [42], not di-
rectly on the character data in XML documents. Every value in XQuery is a
sequence of individual atomic values or nodes. Sequences are central to XQuery,
so much so that one atomic value or node and a sequence containing that item
are indistinguishable. An atomic value is an instance of one of the the twenty-
three XML Schema primitive types (e.g., xs:string, xs:decimal, xs:date, et al) [41].
A node is either a document, element, attribute or text 5 A document node has a
value; an attribute or element node has a name, a value, and a type annotation;
and a text node has a string value. A node’s type annotation specifies that the
node is valid with respect to a type defined in a schema.

Although XQuery only requires that input documents be well formed, data-
exchange applications often require that some structure be imposed on doc-
uments. There are a number of standard schema languages for XML, includ-
4 The XML specification defines several other constraints for well-formedness.
5 For simplicity, we omit comment and processing-instruction nodes.
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<?xml version="1.0" encoding="ISO-8859-1" ?>

<catalog>

<book isbn="156352578X" year="2000">

<title>No Such Thing as a Bad Day</title>

<author>Hamilton Jordan</author>

<publisher>Longstreet Press, Inc.</publisher>

<retail_price currency="USD">15.40</retail_price>

<list_price currency="USD">22.10</list_price>

<review reviewer="Library Journal">

This book is the moving account of one man’s successful battles

against three cancers...<title>No Such Thing as a Bad Day</title> is

warmly recommended.

</review>

</book>

<!-- More books here -->

</catalog>

Fig. 1. A book catalog represented in XML

ing: DTDs, part of the original W3C recommendation defining XML [39]; XML
Schema, a W3C recommendation which supersedes DTDs [40, 41]; and Relax
NG, an Oasis standard [12]. XML Schema features both named and struc-
tural types [34], with structure based on tree grammars, whereas all other XML
schema languages only express structural constraints. XQuery’s type system is
based on XML Schema, so it supports both named and structural types. In this
paper, we describe only essential features of XML Schema, which include in-
clude: named simple types and complex types; global attributes and elements;
and atomic simple types. We omit anonymous types, local elements and at-
tributes, and derivation of new types by restriction and by extension.

XML Schema’s syntax is XML, making it difficult to read, and the same type
can be modeled using different constructs, making it a poor notation for types.
Instead, we use XQuery’s internal type notation, which is concise and orthogonal.
Figure 2 defines a schema for book catalogs in XQuery type notation. A schema
is a collection of mutually referential declarations of simple, complex, element
and attribute types.

A simple-type declaration associates a name with an atomic type, a list of
atomic types, or a union of atomic types. Atomic types include XML Schema’s
twenty-three primitive types. The simple-type declaration on line 13 in Figure 2
specifies that the simple-type name ISBN is associated with the atomic type
xs:string.

A complex type declaration associates a name with a model of node types. A
node type is a document type, a named element or attribute type, or the text
type. The complex type declaration on line 2 associates the name Catalog with
the model containing one or more book elements, and the declaration on lines 4–
12 associate the name Book with the model containing one isbn and one year at-
tribute, one title element followed by one-or-more author elements or one-or-more
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editor elements, followed by one publisher element, one retail price element, an op-
tional list price element, and zero-or-more review elements. In general, atomic and
node types can be combined with the infix operators for sequence (,), union (|),
and interleave (&), and the post-fix operators zero-or-one (?), one-or-more (+),
or zero-or-more (*).

An attribute declaration associates a name with a simple type (lines 14,18,
24, and 29 contain examples), and an element declaration associates an element
name with a simple or complex type (lines 1, 3, 16, 17, 19–22, and 28 contain
examples).

XQuery expressions operate on data-model values, not directly on documents,
Given an (external) document and a type (from a schema), validation produces
an (internal) data-model value in which every element and attribute node is
annotated with a simple or complex type, or it fails. Validation guarantees that
a node’s content matches the node’s type annotation.

2.1 An Example Query

A common application of XQuery is to integrate information from multiple XML
data sources. Our example query in Figure 3 integrates information from the
Barnes and Ignoble book catalog with information about book sales from the
Publisher’s Weekly trade magazine. For each author in the catalog, the query
produces the total number of and the total sales receipts for books published by
the author since 2000. The query illustrates most of XQuery’s key features: path
expressions for navigating, selecting and extracting XML values; constructors for
creating new XML values; let expressions for binding variables to intermediate
results; for expressions for iterating over sequences and for constructing new
sequences; and functions for modularizing queries.

Figure 3 contains an XQuery main module. A main module consists of im-
ported schemas, zero or more user-defined functions, and one main expression,
whose value is the result of evaluating the module. The schema imported on
line 1 corresponds to the book catalog schema in Figure 2 and is imported as
the default schema, which means unprefixed names of nodes and types refer to
definitions in the given schema. The schema imported on line 2 corresponds to
a schema for book sales and is associated with the prefix sls, which means all
elements and types prefixed with sls refer to the given schema. We will discuss
schemas and typing more in the Section 4.

The function sales-by-author (lines 3–16) is the work-horse of this module. It
takes a catalog element and a sls:sales element, and for each author in the catalog,
returns a total-sales element containing the author’s name, the total number of
and the total sales of books that the author published since January, 2000.

This function has several examples of path expressions, so we describe those
first. The path expression $cat/book/author on line 6 extracts all the author
children of book children of the catalog element bound to the variable $cat. Path
expressions may conditionally select nodes. The path expression on line 7:

$cat/book[@year >= 2000 and author = $name]
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1. define element catalog of type Catalog

2. define type Catalog { element book + }

3. define element book of type Book

4. define type Book {

5. ( attribute isbn & attribute year ) ,

6. element title ,

7. ( element author + | element editor + ),

8. element publisher ,

9. element retail_price ,

10. element list_price ? ,

11. element review *

12. }

13. define type ISBN restricts xs:string

14. define attribute isbn of type ISBN

15. define type Name restricts xs:string

16. define element author of type Name

17. define element editor of type Name

18. define attribute year of type xs:integer

19. define element title of type xs:string

20. define element publisher of type xs:string

21. define element retail_price of type Price

22. define element list_price of type Price

23. define type Currency restricts xs:string

24. define attribute currency of type Currency

25. define type Price {

26. attribute currency , xs:decimal

27. }

28. define element review of type Review

29. define attribute reviewer of type xs:string

30. define type Review {

31. attribute reviewer , ( text | element )*

32. }

33. define type Vendor {

34. attribute type of type xs:string ,

35. element name of type xs:string ,

36. element author ,

37. element count of type xs:integer ,

38. element total of type xs:decimal

39. }

40. define element vendor of type Vendor

Fig. 2. Schema in XQuery type notation for book catalog in Figure 1
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1. import schema default element namespace "http://book-vendors.com/catalog.xsd"

2. import schema namespace sls = "http://book-trade.com/sales.xsd"

3. define function sales-by-author ($cat as element catalog,

4. $sales as element sls:sales) as element total-sales

5. {

6. for $name in fn:distinct-values($cat/book/author)

7. let $books := $cat/book[@year >= 2000 and author = $name],

8. $receipts := $sales/sls:book[@isbn = $books/@isbn]/sls:receipts

9 order-by $name

10. return

11. <total-sales>

12. <author> { $name } </author>

13. <count> { fn:count($books) } </count>

14. <total> { fn:sum($receipts) } </total>

15. </total-sales>

16. }

17. let $bi := fn:doc("http://www.bni.com/catalog.xml"),

18. $pw := fn:doc("http://www.publishersweekly.com/sales.xml")

19. return

20. <vendor type="retail" name="Barns and Ignoble">

21. { sales-by-author($bi/catalog, $pw/sls:sales) }

22. </vendor>

Fig. 3. An XQuery main module

extracts all book children of the catalog element that have a year attribute with
value greater-or-equal to 2000 and that have at least one author child whose
content equals the value bound to the variable $name. In database parlance, this
path expression self-joins the authors and books in the catalog source and selects
those books published since 2000. Similarly, the path expression on line 8:

$sales/sls:book[@isbn = $books/@isbn]/sls:receipts

joins the books selected by the path expression on line 7 with the sls:books from
the sales source. The nodes are joined on their isbn attribute values. The path
expression then extracts or projects the sls:receipts elements.

The let expression on lines 7–8 is a classic functional let: It binds the variable
on the left-hand-side of := to the value on the right-hand side, then evaluates
its body (lines 9–15) given the new variable binding.

Returning to line 6, the function fn:distinct-values takes a sequence of atomic
values, possibly containing duplicates, and returns a sequence with no duplicates.
When applied to the sequence of author nodes, it returns their string contents
with duplicates eliminated. Given this sequence of author names, the for expres-
sion on line 4 binds the variable $name to each string in the sequence of author
names, evaluates the let expression on lines 5–12 once for each binding of $name,
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and concatenates the resulting values into one sequence. The for expression cor-
responds to a monad over sequences of atomic values and nodes [19].

The order-by expression on line 7 guarantees that the sequence produced
by the return expression is in sorted order by the authors’ names. The return
expression on lines 8–13 is evaluated one for each binding of $name. The ele-
ment constructor on lines 9–13 constructs one total-sales element, and in turn
its subexpressions construct one author, one count, and one total element, which
contain the author’s name, the total number of books published in 2000, and
the sum of all book receipts, respectively.

The main expression on lines 17–22 applies the function sales-by-author to
the book catalog published by Barns and Ignoble and to the book sales data
published by Publisher’s Weekly magazine – of course, the function could be ap-
plied to any pair of elements that are valid instances of the catalog and sls:sales
elements. The function fn:doc6 accesses the XML document at the given URL,
validates it, and maps it into a document node value. Documents typically con-
tain references to the schemas against which they should be validated. The book
catalog is validated against the schema book-catalog.xsd, and the sales document
is validated against the schema book-sales.xsd. This correspondence is not ex-
plicit in the query, but instead is established by the environment in which the
query is evaluated. For example, the fn:doc function might be implemented by
a database in which pre-validated documents are stored.

A document node represents an entire XML document and therefore does not
correspond to any data in the document itself. The path expression $bi/catalog
selects all catalog elements that are children of the document node. The path
expression $pw/sls:sales is similar. Lastly, the element constructor on lines 20–
22 constructs a new vendor element, which contains the result of applying the
function sales-by-author to the values of the path expressions $bi/catalog and
$pw/sls:sales.

This quick introduction should give the reader a sense of XQuery’s expressive-
ness and capabilities. For the reader interested in more details, we recommend
Robie’s XQuery tutorial [32].

3 XQuery as a Query Language

XQuery has many characteristics of traditional query languages, such as SQL,
Datalog, and OQL [8]. First, Its data model is restricted to those values that
XML can represent, e.g., XQuery’s data model includes sequences of nodes and
atomic values, but excludes, for example, sets, bags, and nested sequences, be-
cause they are not intrinsic to XML. Similarly, SQL’s data model is restricted
to tables of atomic values.

Second, almost all XQuery operators and expressions either construct or ac-
cess values in the data model, and common idioms for constructing and accessing
values are built-in to the language to improve ease of use. For example, XQuery’s

6 The fn is the namespace prefix that denotes XQuery’s built-in functions [43].
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equality and inequality operators have a fairly complex implicit semantics. This
equality expression evaluates to true if the book bound to $book contains at
least one author child whose content equals the string “Hamilton Jordan”:

$book/author = "Hamilton Jordan"

Thus, the (in)equality operators are existentially quantified over sequences of
items: The operators are applied to pairs of items drawn from their operands.
Second, if any one item evaluates to a node, the node’s (atomic-valued) content is
extracted and then compared to the other operand. This implicit semantics im-
proves ease-of-use for the query writer, especially when writing queries over XML
documents with irregular structure. The query writer writes the same expression
whether a book has zero, one, or multiple author children. Other expressions in
XQuery’s user-level syntax also have rich implicit semantics. Although conve-
nient for a user, this rich semantics can complicate typing and evaluation, so
the semantics of user-level expressions is made explicit by normalization into a
smaller core language. Typing, optimization, and evaluation typically operate
on this smaller core language. We discuss normalization and other compilation
steps in Section 5.

Third, XQuery is strongly typed, meaning that the types of values and ex-
pressions must be compatible with the context in which the value or expression
is used. For example, this expression raises a type error because an isbn attribute
contains a string, which cannot be compared to an integer:

$book[@isbn = 156352578]

All implementations of XQuery must support dynamic typing, which checks
during query evaluation that the type of a value is compatible with the context
in which it is used and raises a type error if an incompatibility is detected. Static
typing is an optional feature of XQuery implementations and more common in
programming languages than in query languages. We discuss static typing in the
next section.

Lastly, XQuery is declarative, thus its semantics permits a variety of evalua-
tion strategies. Recall that the function sales-by-author self-joins the authors and
books in the catalog source, selects those books published since 2000, joins those
books with the sales receipts, projects the books’ receipts, groups the resulting
books and receipts by author, aggregates the total number of books and total
receipts, and orders the results by the author’s name. From a query-language
perspective, this function is very expressive and consequently may be difficult to
evaluate efficiently. Although it is easy to produce a naive evaluation strategy
for this query – simply interpret the query over an in-memory representation of
the documents – for all but the smallest input documents, the naive strategy
will be prohibitively slow. Because XQuery is declarative, its semantics does not
enforce an order of evaluation, and this flexibility permits implementations to
use a variety of evaluation strategies. For example, the following expression, in
which v1 . . . ik are integer values:

for $i in (i1, i2,..., ik) return 100 div $i
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is equivalent to the following expression, which evaluates the body of the for
expression once for each value in the integer sequence:

(100 idiv v1), (100 idiv v2), ... (100 idiv vk)

Because each integer-division expression is independent of all others, they can
be evaluated in any order, or even in parallel. We discuss evaluation strategies
in Section 5.

Flexible evaluation order permits some expressions to be non-deterministic.
For example, the following expression may raise a divide-by-zero error or evaluate
to true, depending on which disjunct is evaluated first:

(1 idiv 0 < 2) or (3 < 4)

The if-then-else conditional expression, however, enforces an evaluation order,
thus the or expression above is not equivalent to the following if-then-else, because
the else branch is only evaluated if the condition evaluates to false:

if (1 idiv 0 < 2) then fn:true()
else if (3 < 4) then fn:true()
else fn:false()

XQuery’s formal semantics [46] specifies formally where evaluation order must
be guaranteed and where it may be flexible, and it also guarantees that an
expression either raises an error or evaluates to a unique value.

4 XQuery as a Programming Language

Despite its similarity to other query languages, XQuery has two significant char-
acteristics not common to query languages: it is statically typed and it is Turing
complete. We consider the impact of these features next.

Static typing, in general, refers to both type checking and type inference. For
each expression in a query, type checking determines if the type of the expression
is compatible with the context in which it is used, and type inference computes
the type of the expression based on the types of its subexpressions. Neither type
checking nor type inference are difficult for languages like SQL and Datalog. The
types include only atomic types and tuples of atomic types, and simple inspection
of the query determines the type of each expression. A static type system for
OQL must be able to determine that every message applied to by an object will
be understood during query evaluation, i.e., no “message not understood” errors
will be raised, but no such static type system exists [2].

We expect the reader is familiar with static typing’s numerous benefits. Most
modern compiled languages (Java, C++, C#, ML, Haskell, etc.) provide static
typing to help build large, reliable applications. Static typing can help by de-
tecting common type errors in a program during static analysis instead of the
developer discovering those errors when the program is run. Static typing in
XQuery serves the same purpose and can detect numerous common errors. For
example, it detects the type error in this expression from Section 3 in which a
string is compared to an integer:
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$book[@isbn = 156352578]

It can also detect the misspelling of isbn as ibsn in the path expression
$book/@ibsn. Assuming that $book has type element book, the static type in-
ferred for $book/@ibsn is the empty sequence, because a book element contains
no ibsn attributes. A static type error is raised whenever the type of an expres-
sion (other than the literal empty sequence ()) is empty. XQuery’s static typing
rules also detect when a newly constructed element will never validate against
the expected type for that element. In the query Figure 3, the vendor element
constructed contains a name attribute, but the vendor element type in the schema
in Figure 2 expects a name element – static type checking detects this error. In
addition, static type analysis can help yield more efficient evaluation strategies.
We discuss those benefits in the next section.

Given these benefits, it may come as a surprise that static typing is an op-
tional feature of XQuery. One reason is that there is a tension between writing
queries that operate on well-formed documents and that are also statically well-
typed. In Section 2, we stated that XQuery only requires input documents to be
well formed, but also stated that all data-model values be labeled with a type. To
represent well-formed documents in the data model, all nodes from are labeled
with types indicating that no additional type information is known – well-formed
elements are labeled with xdt:untypedAny and well-formed attributes are labeled
with xdt:untypedAtomic. Assuming that $book has static type element book of
type xdt:anyType, the following expression is ill-typed:

$book/list price - $book/retail price

The reason is that arithmetic operators require that each operand be zero-or-
one atomic value. A well-formed book element may have an arbitrary number
of list price and retail price children, and therefore contain an arbitrary num-
ber of atomic values. Because static typing examines a query’s expressions, not
the values that those expressions produce, static typing must be a conservative
analysis. Even though during evaluation every well-formed book element in the
input may contain exactly one list price and one retail price, static analysis must
assume otherwise. To write statically well-typed queries over well-formed data,
the query writer must explicitly assert the expected structure of the document.
The following expression asserts statically that the book element will contain
one list price and one retail price:

fn:one($book/list price) - fn:one($book/retail price)

This permits static typing to proceed assuming the correct types. If during eval-
uation, the book does not have the expected structure, a dynamic error is raised.
XQuery is designed to be easy to use on both well-formed and validated doc-
uments. Because these assertions make writing queries over well-formed docu-
ments burdensome, static typing is optional.

XQuery is Turing complete, because it does not restrict recursion in user-
defined functions. XML documents support recursive structure and therefore
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some form of recursion is necessary. For example, here is a schema that describes
a parts manifest, in which a part element may contain other part elements.

define element part {
attribute name of type xs:string ,
attribute quantity of type xs:integer ,
element subparts ?

}
define type Subparts { element part + }
define element subparts of type Subparts

And here is a parts manifest conforming to the above schema:

<element part name="widget" quantity="1">
<subparts>
<element part name="nut" quantity="100"/>
<element part name="bolt" quantity="100"/>

<subparts>
</element>

Any query that must preserve the recursive structure of the document can only
be expressed by a recursive function.

From a database-theory perspective, Turing completeness is heresy. Many
optimizations for relational queries require solving the query containment prob-
lem: Given two queries Q1 and Q2 and a schema S, for all databases D such that
D is an instance of S, is Q1(D) contained in Q2(D), i.e., ∀D s.t. D : S, Q1(D) ⊂
Q2(D)? Numerous results from database theory characterize the complexity of
query containment based on the expressiveness of the query language. Answer-
ing the question has practical implications. Query optimizers use containment
to determine whether the result of a new query is contained in a pre-computed
view – thus potentially reducing the cost of evaluating the new query. Evaluation
strategies also use containment to rewrite queries so that they may better utilize
physical indices.

Answering the containment question for a Turing-complete program is equiv-
alent to solving the halting problem(!), so to establish containment results for
XQuery, we must consider subsets of the language. Most results are restricted
to path expressions [], which express a very limited form of recursion (i.e., navi-
gation via the descendant and ancestor axes) and do not construct new values.
The UnQL [6] query language supports mutually recusive functions over trees,
but requires that recursion alway proceed down the tree, thus guaranteeing ter-
mination. Considering such a subset of XQuery may help make some queries
more amenable to analysis.

5 Implementing XQuery

Most implementations of XQuery are not generic, stand-alone processors, but
are designed with particular applications or goals in mind. Examples include
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processors that operate on streams of XML data [3, 22] and ones that query data
stored in relational databases and publish it in XML[16]. These implementations
are designed for speed and/or scalability, but not necessarily completeness. Our
own implementation, called Galax7 and the IPSI XQuery processor [20] aim
for completeness and are the only implementations to date that support static
typing. All processors, regardless of how they work, must preserve the XQuery
semantics as described in the language and formal semantics documents [45, 46],
otherwise they do not implement XQuery! But how they achieve this result is an
open and highly competitive area. In this section, we describe the stages of an
“archetypal” XQuery architecture, which loosely corresponds to the architecture
of Galax.

5.1 Archetyal Architecture

XQuery
Expression

Parsing Normalization
Syntax Tree

Abstract Core

Evaluation Optmization
Physical Compilation

Data Model

Result in XML

Logical
Optimization

Static Typing

Algebraic

Query PlanQuery Plan

Algebraic
Optimized

Physical
Storage

Document Access

Database, etc.

File,
Stream,

AST 

Physical

Simplified

Indices

Core AST

Fig. 4. Archetypal Architecture

Figure 4 depicts the query-processing stages of our example architecture.
The first four query-processing stages (top of diagram) are common in compilers
for high-level languages. The later stages (bottom of diagram) are common in
interpreters for query languages. Parsing takes an expression in XQuery’s user-
level syntax and yields an abstract syntax tree (AST). We do not discuss this
stage further. Normalization takes the AST of the user-level expression and
maps it into an AST of XQuery’s smaller core language, which is a proper
subset of the user-level language. This stage makes the implicit semantics of

7 http://db.bell-labs.com/galax/
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user-level expressions explicit in the core language. The optional static typing
stage takes the core AST and yields the same AST in which every expression node
is annotated with its static type. Logical optimization takes the core AST (with
or without static type annotations) and applies logical rewriting rules, such as
common-subexpression elimination, constant folding, hoisting of loop-invariant
expressions, etc., and if static types are known, type-specific simplifications.

The first four stages typically are independent of the physical representation
of documents, whereas the last three depend on the representation. A fast-path
to a complete implementation is building a simple interpreter for the typed
XQuery core. We initially took this path in Galax, but are now extending Galax
to include the later stages. Compilation takes a (typed) core AST and compiles it
into an algebraic query plan that depends on the physical operators provided for
accessing the document. Whereas the core AST is a “top-down” representation of
the original expression, the algebraic query plan is a “bottom up” representation.
Physical optimization takes a query plan and improves it by utilizing any indices
that are available in the storage system. Lastly, the evaluation stage interprets
the optimized query plan and yields an XML value in the data model, which
is returned to the environment in which the query was evaluated. We illustrate
the normalization, logical optimization, and physical optimization stages on a
simplified version of the query in Figure 3.

Our example architecture figure excludes the document-processing stages,
which are highly implementation dependent. An implementation typically will
provide a few methods for accessing documents, for example, in the file system,
on the network [1, 22], in native XML databases with specialized indices [11, 5,
28], or in relational databases [4, 33] also with indices, but do not provide all
possible methods. Our example architecture assumes that documents are stored
in a relational database.

5.2 Normalization

To illustrate normalization, we consider a variant of the query in Figure 3 that
computes the number of books published by each author since 2000:

for $name in distinct-values($cat/book/author),
let $books := $cat/book[@year >= 2000 and author = $name]
return
<total-sales>
<author> { $author } </author>
<count> { count($books) } </count>

</total-sales>

Recall from Section 3 that many user-level expressions have a complex im-
plicit semantics. This semantics improves ease-of-use when writing queries over
XML documents whose structure may not be known, but complicates static
typing and compilation into algebraic query plans. Normalization rewrites each
user-level expression into an expression in the core syntax that has the same
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semantics but in which each subexpression has a very simple semantics. By ne-
cessity, normalization precedes static typing, so the rewritings are independent of
typing information. For example, the path expression $cat/book[@year ¿= 2000]
in the query above is is normalized into the following core expression:

for $_c in $cat return
for $_b in $_c/child::book return
if (some $v1 in fn:data($_b/attribute::year) satisfies

some $v2 in fn:data(2000) satisfies
let $u1 := fs:promote-operand($v1,$v2) return
let $u2 := fs:promote-operand($v2,$v1) return
op:ge($u1, $u2))

then $_b
else ()

The implicit iteration in each step of the path expression is made explicit in the
nested for expressions. The axis (or direction) in which path navigation proceeds
is also made explicit – in this case, it is the child axis. The implicit existential
quantification of the predicate expression is made explicit in the nested some
expressions, and the automatic extraction of atomic values from a sequence of
atomic values or nodes is handled by the fn:data function. Before applying the
overloaded greater-than-or-equal operator, the pair of atomic values are pro-
moted to comparable types, if possible. For example, promoting a float and
decimal yields two floats, and promoting a decimal and date would raise a type
error, because they are incomparable.

From the very small example above, we can see that normalization yields
large core expressions in which each sub-expression has a simple semantics. For
simplicity, we have omitted other explicit operations, e.g., that guarantee the
result of every path expression is in document order. After normalization and
static typing, logical optimizations can further simplify the core expression.

5.3 Logical optimization

Many standard optimizations for functional languages such as elimination of
common subexpressions, constant propogation and folding, function inlining, and
elimination of unused variables, are applicable to XQuery. The normalization of
the path expression $cat/book[@year ¿= 2000] in the last section can be simplified
to:

for $_c in $cat return
for $_b in $_c/child::book return
if (some $v1 in fn:data($_b/attribute::year) satisfies

let $u1 := fs:promote-operand($v1,2000) return
let $u2 := fs:promote-operand(2000,$v1) return
op:ge($u1, $u2))

then $_b
else ()
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The application of fn:data to the constant integer 2000 simplifies to constant
itself, the existential quantification over the constant is eliminated, and the con-
stant is propogated to its uses. Without additional type information, the above
expression cannot be further simplified, because we do not know, for example,
how many atomic values may be contained in an year attribute nor do we know
their type.

Static type information can be used to further simplify expressions. Assuming
that $cat has type element catalog of type Catalog, the static types of the other
expressions are as follows:

$cat has type element catalog of type Catalog
$cat/child::book has type element book +

$ b has type element book of type Book
$ b/attribute::year has type element year of type xs:integer

fn:data($ b/attribute::year) has type xs:integer
$v1 has type xs:integer
$u1 has type xs:integer
$u2 has type xs:integer

Given this information, the above expression is simplified to:

for $_b in $cat/child::book return
if (op:integer-ge(fn:data($_b/attribute::year), 2000))
then $_b
else ()

The first for expression is eliminated (because its input sequence is a single el-
ement). Similarly, the existential quantification over the year attribute’s single
xs:integer value is eliminated. Because both arguments to fs:promote-operand are
integers, the promotions are eliminated, and the overloaded op:ge operator is
replaced by the monomorphic op:integer-ge. Even these basic simplifications can
substantially reduce the size and complexity of query plans. Although not illus-
trated by this example, another important logical optimization is determining
when the order of values produced by an expression is insignificant. Knowing
that order is insignificant can yield more efficient evaluation plans – we return
to this issue in the next section.

Returning to the example query that computes the number of books pub-
lished by each author since 2000, the simplified core expression assuming static
typing is:

for $name in
distinct-values(for $_b in $cat/child::book return

fn:data($_b/child::author))
return
let $books :=
for $_b in $cat/child::book return
if (op:integer-ge(fn:data($_b/attribute::year), 2000)

and



18

some $_a in $_b/child::author
satisfies fn:data($_a) = $name)

then $_b
else ()

return
<total-sales>
<author> { $name } </author>
<count> { fn:count($books) } </count>

</totoal-sales>

Although this expression is substantially simpler than the core expression that
is dynamically typed, a naive evaluation strategy is quadratic in the number of
distinct author names and books (i.e., each book in the catalog is accessed once
for each author in the catalog). Clearly, this is impractical for any document in
which the set of books and authors exceed main memory.

5.4 Physical optimization

Efficient evaluation strategies are possible if the physical representation of the
XML documents is taken into account. Typically, an evaluation plan is composed
of algebraic operators specialized to the access methods provided by the storage
system. For our small example, we assume the book catalog document is stored
in a relational database containing the two tables:

BookTable(bid, title, year)
AuthorTable(bid, name, idx)

The BookTable table contains one tuple for each book; each tuple contains the
book’s year, its title, and a key field (bid) that uniquely identifies the book in the
catalog document. The AuthorTable table contains one tuple for each author in
each book. The bid field is the unique identifier of the book, name is the name
of the author, and idx is the ordinal index of the given author in the book’s
sequence of authors.

We chose this representation, because it is simple. There are numerous tech-
niques for “shredding” XML document into relational tables [33], and with each
technique, there are corresponding trade-offs in query performance [4]. Native
XML databases with custom indices over trees and algebras for utilizing these
structures are an area of active research [25, 28].

Given the relational representation above, the compilation stage rewrites the
normalized expression into a tree (or graph) of operations that access the tables
and indices available in a relational database. We assume the following standard
operations:

– Scan produces each tuple in a relation.
– Select takes a stream of tuples as input and produces tuples that satisfy a

selection predicate.
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– Join takes two tuple streams and a join predicate, and produces tuples
from the Cartesian product of the two input streams that satisfy the join
predicate.

– Map is the standard functional map operation; it takes a variable and a
tuple stream, binds the variable to each tuple in the stream, and evaluates
an expression given the variable binding, and produces a new stream of
values.

– Group-by takes a stream of tuples and a grouping criteria and produces a
table containing one tuple for each distinct value in the grouping criteria;
each tuple contains one field for the group-by value and one field for all items
for which the grouping criteria has the given value.

We assume a mechanical, naive compilation from the normalized expression
into a plan using the physical operators, which results in the following query
plan:

Map(
BOOKS ;
Map(
AUTHOR ;
distinct(

Project(A1.name,
Join(Scan(A1 in AuthorTable),

Scan(B1 in BookTable),
A1.bid = B1.bid)

)
),
Select(Join(Scan(A2 in AuthorTable),

Scan(B2 in BookTable),
A2.bid = B2.bid),

B2.year >= 2003 AND A2.author = AUTHOR)
),
<total-sales>

<author> { AUTHOR } <author>
<count> { count(BOOKS) } </count>

</total-sales>
)

A1, A2, B1, and B2 stands for tuples in a relational table. Path navigation is
compiled in to table scans and joins between the author and book tables. The
path-expression predicates clause is compiled into a selection operation. Finally,
the let expression is compiled into a Map operation. Obviously, this query plan is
not better than the naive evaluation of the original expression. However, we can
now apply database optimization techniques. Notably, various query unnesting
techniques can be applied, and the nested query can be converted into a group
by-operation. One possible final query plan is as follows:

Map(
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AUTHOR-BOOKS ;
GroupBy(

Select(Join(Scan(A1 in AuthorTable),
Select(Scan(B1 in BookTable), B1.year >= 2000)
A1.bid = B1.bid)),

A1.name,
Partition := count(B1)

),
<total-sales>
<author> { AUTHOR-BOOKS.name } </author>
<count> { count(AUTHOR-BOOKS.B2) } </count>

</total-sales>
)

*** Say something about how programming language features im-
pact physical optimization plans. ***

6 Growing XQuery

We cannot predict what XQuery 2.0 will be, but we observe that XQuery 1.0
is growing already. Requirements for fulltext operators already exist [47], and
we expect more special-purpose operators will follow. XL [21], a programming
language for web services, is based on XQuery. Xduce, a cousin of XQuery, is
becoming Xtatic, a programming language for XML [23]. Our own experiences
with Galax constantly reveal opportunities in which a richer XQuery semantics
would permit our users to build more XML applications faster and more reliably.
We expect that some (many?) of our working-group colleagues will object to
our suggestions that XQuery evolve into a programming language for XML.
But we believe it is prudent to consider version 2.0 features now, before many
incompatible feature sets emerge.

We focus on features already in demand and those that we believe will help
XQuery grow in a disciplined way: updates, exception handling, higher-order
functions, and parametric polymorphism. Even if XQuery were to have all these
features, it still has to co-exist within a variety of environments. We conclude
with a discussion of XQuery’s interface to other host languages.

Update statements are conspicuously absent from XQuery 1.0, and are the
most frequently requested feature. Database programmers rightly expect the
ability to query and update XML. Updates were excluded from XQuery 1.0,
because they require substantial study to get right, and thus would delay de-
livery of XQuery 1.0. Lehti has proposed an update language for XQuery [26]
in which an insert, delete, or replace statement specifies how to update a node
or location, and a path expression denotes the node or location to update. This
insert statement updates our example book catalog:

insert
<book isbn="0399127380" year="1982">
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<title>Crisis: The Last Year of the Carter Presidency</title>
<author>Hamilton Jordan</author>
<publisher>Putname Pub Group</publisher>
<retail_price currency="USD">1.94</retail_price>

</book>
before $cat/catalog/book[@isbn="156352578X"]

Update statements are an imperative feature, but more restricted than pointers
in imperative languages or reference values in functional languages, making it
possible to retain some benefits of declarativeness, such as flexible evaluation
order. To permit reordering of update and query statements, it must be possi-
ble to determine “non-interference” between statements. A formal semantics of
updates would help establish criteria for non-interference, and thus should be
specified before officially adding updates to XQuery.

Another feature conspicuously absent from XQuery is exception handling.
XQuery’s built-in functions may raise errors, and user-defined errors can be
raised by calling the function fn:error, which takes any atomic value or node as
an argument. For example, this expression raises an error containing a myerror
element:

fn:error(<myerror>An error in my query</myerror>)

There is no expression, however, for catching and handling errors – errors are
propagated to the environment in which the expression is evaluated. As more
libraries of XQuery functions are created and used, the ability to detect and
recover from errors becomes an important usability issue. The working group
debated a proposal for an exception-handling expression. A try expression takes
an expression and zero or more catch branches labeled with types, and condi-
tionally evaluates a branch if the expression raises an error value that matches
the branch’s type. For example, this expression either evaluates to the value of
Expr, or if Expr raises an error that matches element myerror, it evaluates to the
string ”My error”, otherwise any other error is re-raised.

try (Expr )
catch $err as element myerror return "My error"
default $err return fn:error($err) {-- Re-raise the error --}

One reason the try-catch expression was excluded from XQuery 1.0 is its poten-
tial interaction with updates. It was not immediately clear what the semantics
of updates should be in the presence of exceptions and exception handling. For
example, should the exception handling expression enforce a transactional se-
mantics (i.e., the ability to rollback or commit) to update statements? For this
reason, we decided to study updates and exception handling together in XQuery
2.0.

Although XQuery is a functional language, it does not support higher-order
functions or parametric polymorphism – two of the most powerful programming
constructs in languages like O’Caml, Standard ML, and Haskell. In higher-order
languages, functions are first-class values and, for example, can be bound to



22

variables and passed as arguments to other functions. Higher-order functions
promote code reuse, much as method overriding promotes code reuse in object-
oriented languages. Parametric polymorphism permits a function to have one
definition but to operate on values of different types. Higher-order functions and
parametric polymorphism are most powerful when combined. For example, this
O’Caml signature for the function quicksort takes a list of values of any type
’a, a comparison function that takes two ’a values and returns an integer, and
returns a list of ’a values in sorted order.

quicksort : ’a list -> (’a * ’a -> int) -> ’a list

XQuery 1.0 has ad-hoc polymorphism. All the infix operators and many built-in
functions are overloaded, e.g., the arithmetic operators can be applied to any
numeric value. Users can simulate polymorphism by constructing a new type
that is the union of a fixed set of types and then define a function that takes
the union type. But this requires that the input types be known in advance
of writing the function, which defeats much of the usefulness of polymorphism.
Like exception handling, higher-order functions and parametric polymorphism
become more important as users write more libraries. For example, we can imag-
ine a XQuery library that constructs and processes SOAP messages [49], which
consist of generic headers and an application-specific payloads. An XQuery li-
brary for SOAP could take as arguments functions that construct and process
the application-specific payloads. Not surprisingly, as higher-order functions and
parametric polymorphism increase expressiveness, they also increase the com-
plexity of static typing and evaluation. But because XQuery is designed in the
tradition of functional languages, they are natural features to consider.

3. API. Where is the boundary between programming environment and
query language? Language bindings (barrier between XQuery and some general-
purpose programming language is smaller than between SQL and GPLs.) Should
XQuery acquire more general-purpose programming features or should it the
“API” be discarded in favor of an “embedded language”?

Designing XQuery 1.0 has been both an invigorating and exhausting ex-
perience. The requirements of vendors, expectations of users, and scrutiny of
academics has added equal amounts of challenge and frustration. We believe the
resulting language will be a success, and that with success, users will demand
that it grow to meet their XML programming needs. We hope to influence that
growth by adding a small number of powerful language features. In that way, we
hope to put the tools for XQuery’s growth in the hands of its users.
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34. J. Siméon and P. Wadler, “The Essence of XML”, ACM Symposium on Principles
of Programming Languages, 2003, pp 1–13.

35. F. Simeoni et al, “Language Bindings to XML”, IEEE Internet Computing, 7(1),
Jan./Feb. 2003.

36. G. Steele “Growing a Language”, Journal of Higher-Order and Symbolic Compu-
tation, 12(3), Oct 1999, pp 221–236.

37. V. Vianu, “A Web Odyssey: from Codd to XML”, Proceedings of ACM Symposium
on Principles of Database Systems, pp 1–16, 2001.

38. M. Wallace and C. Runciman, “Haskell and XML: generic combinators or type-
based translation?”, Proceedings of ACM SIGPLAN International Conference on
Functional Programming, 1999, pp 148–159.

39. Extensible markup language (XML) 1.0. W3C Recommendation, February 1998.
http://www.w3.org/TR/REC-xml/.

40. XML Schema Part 1: Structures. W3C Recommendation, May 2001.
41. XML Schema Part 2: Datatypes. W3C Recommendation, May 2001.
42. XQuery 1.0 and XPath 2.0 data model. W3C Working Draft, May 2003.

http://www.w3.org/TR/query-datamodel/
43. Xquery 1.0 and xpath 2.0 functions and operators version 1.0. W3C Working Draft,

May 2003. http://www.w3.org/TR/xpath-operators/
44. XPath 2.0. W3C Working Draft, May 2003. http://www.w3.org/TR/xquery/
45. XQuery 1.0: An XML Query Language. W3C Working Draft, May 2003.

http://www.w3.org/TR/xquery/
46. XQuery 1.0 and XPath 2.0 Formal Semantics. W3C Working Draft, May 2003.

http://www.w3.org/TR/query-semantics/
47. XQuery and XPath Full-text Requirements W3C Working Draft, May 2003.

http://www.w3.org/TR/xmlquery-full-text-requirements/



25

48. XSL Transformations (XSLT) Version 2.0. W3C Working Draft, May 2003.
http://www.w3.org/TR/xslt20/

49. SOAP 1.2 Part 1: Messaging Framework, W3C Proposed Recommendation, May
2003. http://www.w3.org/TR/2003/PR-soap12-part1-20030507/


