The Simplest XML Storage Manager Ever

Avinash Vyas
Bell Laboratories
600 Mountain Ave.
Murray Hill, NJ 07974

vyas@lucent.com

ABSTRACT

After more than four years of incubation within the W3C,
XQuery 1.0 is close to completion. Even before its official
release, development of numerous XQuery implementations
is underway. However, those implementations have either
focused on completeness or performance at the expense of
the other. In this paper, we report on our experience build-
ing Jungle, a secondary storage manager for Galax. We
designed Jungle to be the “simplest XML storage manager
ever” that supports the complete XQuery 1.0 language, and
we show it can scale to documents up to several hundred
megabytes. Interestingly, the process of developing Jungle
lead us to revisit several key features of currently proposed
XML indexes. As a result, we propose alternative indices
that provide more efficient support for the child axis and
for XML serialization, two critical operations on the XQuery
data model. Jungle is fully operational and now being de-
ployed in production applications.

1. INTRODUCTION

After more than four years of incubation within the W3C,
XQuery is emerging as the de facto query language for XML.
Its success and impact are due, in part, to XQuery’s un-
wavering commitment to being a “good XML citizen”. In
particular, XQuery supports or is compatible with many
related and pre-existing XML standards. XQuery’s data
model handles namespaces and multiple character sets, pre-
serves the inherent order in XML documents, and supports
all six kinds of XML nodes. XQuery 1.0 includes XPath 2.0
as a proper sub-language, making it compatible with other
XML-aware languages that depend on XPath 2.0, such as
XSLT 2.0 or XPointer. Lastly, XQuery’s type system is
based on XML Schema, making it possible to query and
produce typed XML documents. Being a good XML citizen,
however, has a cost and building a complete implementation

*(Produces the permission block, copyright information and
page numbering). For use with ACM_PROC_ARTICLE-
SP.CLS V2.6SP. Supported by ACM.

Mary Fernandez
AT&T Labs - Research
180 Park Ave.
Florham Park, NJ 07932

mff@research.att.com

Jérbme Siméon
IBM Watson Research Center
19 Skyline Drive,
Hawthorne, NY 10532

simeon@us.ibm.com

for XQuery is a significant undertaking. Implementors in
both industry and research are adapting decades of database
and programming-language results to their XQuery imple-
mentations and are crafting new techniques for implement-
ing XQuery efficiently. Still, there is currently no implemen-
tation that is both complete and provide reasonable perfor-
mances for large scale applications. The objective of this
paper is to describe Jungle, an XML storage manager that
is integrated with Galax to create a complete-yet-performant
XQuery 1.0 implementation.

Galax [5] is our own implementation of the family of XQuery
1.0 specifications [2] and is designed to be complete and con-
formant with respect to the W3C standard. Being one of
the very few publicly available XQuery implementations and
one of the most complete, Galax has gathered a small user
community and is the implementation of choice in many
university database classes. More recently, Galax has been
used to support constraint checking within Lucent’s UMTS
wireless infrastructure which is now on trial at several cus-
tomers sites. This application requires support for many of
the advanced XQuery features notably node identity, recur-
sive user-defined functions, and type conversions. Moreover
it has to routinely process documents of several hundred
megabytes, which is beyond the scope of all public XQuery
implementations we are aware of.

Jungle

The goal of the Jungle project is to develop the simplest
XML storage manager that can support the following re-
quirements.

Completeness. The storage manager must support all of
the operations of the XQuery data model [16]. This
requirement is sufficient to ensure full XQuery 1.0 sup-
port. Galax implements an abstract XQuery 1.0 data
model interface which facilitates the use of a different
physical representation of the document, and is used
on top of Jungle.

Scalability. The storage manager must support efficient
representation of XML documents, and scale to docu-
ments of the order of a few hundred megabytes. The
response time for typical UMTS constraints must be of
the order of a few seconds per constraint. In Section 4,
we will show performance results for query evaluation
time on document stored in Jungle.

Reliability. Jungle must be reliable enough to be deployed
in industrial applications. This requirement was the
main driver behind our decision to favor simplicity
and the use of well-established technology. In par-
ticular, Jungle is based on standard B-Tree indexes,
for which there exist good public implementations®,
rather than to develop novel XML indexes. Our expe-
rience throughout the Galax’s development has been
that the simplest solutions are often best: this results
in code which is more robust, easier to maintain, as
well as easier to extend in the future.

In this paper, we describe the design and implementation
of Jungle, and provide preliminary performance results that
demonstrate the effectiveness of the proposed approach. Al-
though not officially released yet, the jungle engine can be

downloaded from the Galax CVS development server?.

Related work

Numerous strategies have been proposed for storing and in-
dexing XML documents [11, 3, 8, 4, 7, 10]. Most of those
indexes [11, 3, 8, 4] act as secondary indexes, allowing to
speed up evaluation for specific subset of the query, but
do not support all of the XQuery data model. Other ap-
proaches, like Natix [10] require the development of new
specific kind of XML indexes, and therefore do not fit our
requirement of being based on standard B-Trees.

The approach presented by Grust in [7] is appealing for sev-
eral reasons. First, it can be used to support the XQuery
data model in its entirety, including node identy, and all of
the XPath axis. Second, it is based on tables and as a result
can easily be implemented using B-Trees. In the rest of the
paper, we will refer to that approach as Accelerated XPath.
Jungle implements an indexing approach which is inspired
from Accelerated XPath. However, a direct implementation
of Accelerated XPath revels that two key operations: the
child axis and serialization, are prohibitively slow. In Sec-
tion 2 we will considered two alternative designs that we con-
sidered for Jungle. The first includes an index on a node’s
children and one on its attributes. The second includes one
index on a node’s first child, one on its next sibling, and one
on its attributes. We are still investigating these two alter-
natives. The former substantially improves the performance
of the child axis, whereas the latter improves performance
of serialization.

Organization

In Section 2, we briefly recall the Accelerated XPath ap-
proach, then present two alternatives indexing approaches
that are used in Jungle. In Section 3 we describe Jungle’s
implementation. And in Section 4, we present experimen-
tal results, notably comparing the performances of Jungle
against the original Accelerated XPath approach. Section 5
reviews alternative indexing strategies, and Section 6 con-
cludes the paper with some discussion about future work,
notably about support for XML updates.

! Jungle is currently developed on top of BerkeleyDB [1].
Zncc.research.bell-labs.com:8081/cgi-bin/cvsweb

Table/Index | Key | Content

Main pre par-pre, kind, id (, post)
Text id text

QName id QName

QName-I1D QName | id

Prefix-URI prefix URI
Table 1: Core storage stuctures

<ex:a xmlns:ex="http://ximep/example.xsd">
<ex:b><ex:c d="d"><ex:e/></ex:c></ex:b>
<ex:f><ex:g/><ex:h i="i">j</ex:h><ex:k/></ex:f>
</ex:a>

Figure 1: Example Document

2. JUNGLE INDEXES

We first recall the Accelerated XPath approach before pre-
senting the two alternative children, and sibling indexes im-
plemented in Jungle. All three approaches share of the same
core storage structures, which are necessary and sufficient
to implement the XQuery data model. These core struc-
tures contain all of the information needed to reconstruct
the original XML document. Each approach then has ad-
ditional auziliary structures, in order to support efficient
access to particular parts of the document’s structure or
content, notably for specific XPath axis.

The Accelerated XPath approach

Table 1 describes the core structures for all three techniques
and are similar to the main table of Accelerated XPath.
The main table contains one record per node, keyed on the
node’s pre-order number, which is obtained during docu-
ment loading. Each record contains the pre-order number
of the node’s parent node, the node kind (element, attribute,
etc.), the identifier of its QName in the QName table, and an
overloaded field whose meaning depends on the node kind.
For a text node, for example, the overloaded field contains
the identifier of the text node’s value in the Text table. As
an example, Figure 2 contains the core structures for the
document fragment given in Figure 1.

Because there are many redundant QNames in documents,
the QName and Prefix-URI tables serve as compact “string
pools”. The QName table maps concise ids to pairs of a
namespace prefix and a local name, and the Prefix-URI table
maps concise prefixes to long URIs. Note that the Acceler-
ated XPath design proposed in [7] also stores the post-order
for each node, as indicated in italics on Figure 1. In fact,
we do not use post-order in Jungle. This is one of the main
departure from [7], and will be explained later.

In this approach, a node’s pre-order number also serves as
its node identifier, which makes comparison of two nodes’
relative order very cheap. In the presence of updates, how-
ever, maintaining pre-order numbers, in the worst case, is
O(N), where N is the size of the document. We return to
the issue of node identity and node-numbering schemes in
Section 6.

In the Accelerated XPath approach, all axes are evaluated

Pre | Par-Pre | Kind | QName-id | Value-id
1 - elem 1 -
2 1 elem 2 -
D nQ l\iaini ID | Text-Value
1 (ex’,’ a 1 7 q7
2 (77 ex” 777 b77) 1o
3 (7’ eX” ” C77) 2 ?
b 3 77.]77
Prefix URI
7ex” | "http://ximep/example.xsd”

Figure 2: Core tables for example document

by scanning records in the main table. The number of
records scanned is determined by applying a two-dimensional
“window” to the main table that filters the nodes for a given
axis. One dimension of that window consists of a pre-order
range and the other of a post-order range. A window re-
duces the total number of records that must be scanned to
compute the axis. For example, the descendant-axis window
is:

<(pre(v), post(v) + height(v)],
[pre(v)-height(v), post(v)), *, elem, *>

This window is applied to the main table as follows. To
compute the a node v’s descendants, select those records
in the main table with pre-order number in the range pre-
order of v to post-order of v plus the height of v. Similarly,
the records must satisfy the remaining constraints, which
are on the node’s post-order value, its parent pre-order, its
kind, and overloaded value. The * wildcard denotes any
value is permissible.

Limitations

We started by implementing the Accelerated XPath approach
as is. However, a direct implementation exhibits two impor-
tant limitations. The first limitation has to do with the eval-
uation of the child axis. In fact, the child axis has the same
complexity as evaluating the descendant axis, and requires
a large scan over the main record structure. To illustrate
this point, here is the child-axis window:

<(pre(v), post(v) + height(v)],
[pre(v)-height(v), post(v)), pre(v), elem, *>

The only difference between the child and descendant win-
dows is that the pre-order number of a candidate node’s
parent must equal v’s pre-order. As a result, child:: turns
out to be as expensive as descendant:: which is not ac-
ceptable for a lot of queries.

The second limitation has to do with the efficiency of serial-
ization. Serializing the result of a query (or similarly export-
ing the original document back into XML) requires accessing
a node’s descendants in document order and is implemented
as a recursive walk of each node’s children. This recursive
walk step by step turns out to be significantly inefficient us-
ing the window access described above. For a single node,

its children are accessed (with cost equivalent to accessing
its descendants), these children are pushed on a stack, and
the procedure is applied recursively to each child on the top
of the stack. For example, serializing node f in Figure 1
requires scanning the following nodes:

Node | Children | Node-records scanned
f (g.hk) (g,h,1,j.k)
g 0 (hii,j k)
h (1,§) (i,j,k)
i 0 (4,k)
j 0] (k)
k 0 0

Obviously, this is not optimal, because as successive win-
dows are are used to scan many nodes’ records multiple
times. Our very first implementation of Jungle, which was
based solely on the Accelerated XPath approach, exhibited
significant overhead during serialization.

The children index

The first alternative design that we considered was the ad-
dition of a specific auxiliary index on the children of a node
one on its attributes. The child index maps the pre-order
number of each element node to the sequence of pre-order
numbers of the node’s children. Figure 3 contains a frag-
ment of the children and attribute indices for the document
in Figure 1.

Key | Children Key | Attributes
1 (2,6) 1 0
2 3

) 4)

Figure 3: Children and Attribute Indices

The obvious advantage of this strategy is that accessing a
node’s children and its attributes requires constant time. In
this strategy, the descendant axis can be implemented by a
generic recursive walk of nodes’ children, which unlike the
window technique, does not require accessing the main table
nor requires comparisons on main-table fields. Serialization
is similar to descendant: a node’s children are pushed on
a stack, and the procedure is applied recursively to each of
its children, in document order. Using that approach, each
node in the main record structure must only be accessed
once. As we will see in the experiments in Section 4, the
children index substantially improve evaluation of the child
and descendant axes, as well as serialization.

The sibling index

Our second alternative design replaces the children index
with two indices: one on a node’s first child and one on its
next sibling. This strategy corresponds to the decomposi-
tion of unranked trees into binary trees. Figure 4 contains
a fragment of these indices for the example document.

One of the motivation for this design is to be more closely
aligned with accesses to nodes sequences as cursors (or streams)
of items at the data model level. The original Galax evalu-
ation engine implemented item sequences as main-memory

Key | First-Child Key | Next-Sibling
1 2 6
2 3 4 5

[\

Figure 4: First-child and Next-sibling Indices

lists in the physical data model, and the physical operators
only accepted materialized lists of items. Currently, Galax’s
physical data model includes both materialized sequences
and streamed sequences as well as materialized sequences or
streamed sequences of tuples. The children index naturally
correspond to materialized sequences, whereas the first-child
and next-sibling indices naturally correspond to streamed
sequences. Their inherent benefit is that both the child and
descendant axes and serialization never require materializa-
tion of intermediate sequences.

However, the sibling index is somewhat less compact that
the children index. As a result, we are still investigating the
trade offs between the two approaches. In general, it appears
that the children approach speeds up operations that require
access to nodes in a bread-first fashion (e.g., child: :), while
the sibling approach speeds up operations that require access
to nodes in a depth-first fashion descendant:: or serializa-
tion).

About loading, post-order, and clustering

In the Accelerated XPath technique, the post-order number,
which is required to compute an axis’ window, is stored in
the main table. In our two alternative design the post-order
number is not required in the main table anymore. We cur-
rently exclude the post-order number from the main table
and instead build an auxiliary index from pre-order to post-
order numbers. This permits us to write records to tables in
document order as soon as the pre-order number is known.
If the post-order number is included in the main record, then
during document loading, a record cannot be written into
the table until after the end-element event, or the record
must be updated once the post-order number is known. We
found that updating the main record with the post-order
number substantially slowed loading, whereas writing the
records in reverse document order slowed down the window
operations, which can benefit from having records clustered
in document order.

3. JUNGLE IMPLEMENTATION
Galax’s Data Model

Although we focus here on the Jungle secondary storage
manager, we note that Galax can operate over any imple-
mentation of its abstract data model, of which Jungle is just
one implementation. In addition to Jungle, there are sev-
eral other implementations of Galax’s abstract data model:
a main-memory implementation, similar to the DOM, and
an implementation that provides an XML view of a pro-
prietary streaming data format [6]. Galax’s abstract data
model requires that an implementation support the parent,
children, and attribute axes natively. Galax provides generic
implementations of the other axes, such as the descendant,
ancestor, and the sibling axes, but permits an implementa-
tion to provide native implementations of these axes if they

so choose. For example, the generic implementation of de-
scendant is implemented as a depth-first, recursive traversal
of the child axis. This design permits Galax to operate on
many kinds of data sources and permits implementations to
add native axis support incrementally.

doc("jungle:///tmp/Example#test")

test-main.db Record

test-Namespace.db BTree prefix -> URL

test-Text.db Hash table from IDs to text nodes (strings)
test-AttrIndex.db BTree ID -> ID

test-ChildIndex.db BTree ID -> ID

(string pools:)

test-QName2QNameID.db Hash tables

test-QNameID2QName.db Hash tables

accel XPath: no AttrIndex or Childindex, only:
test-PrePost.db

first/sibling:

test-AttrIndex.db BTree ID -> ID
test-FirstChildIndex.db BTree ID -> ID
test-NextSibIndex.db BTree ID -> ID

jungle-load -store_dir /tmp/Example -store_name test foo.xm

NB: Interface
NB: Architecture/Implementation

We implemented the indices using BerkeleyDB [5] as a stor-
age manager/index engine. BerkeleyDB can store key-data
pairs only.

Physical Indexes

Jungle uses the Berkeley DB database product [1] to im-
plement the indexes described in Section 2. Berkeley DB
provides tables of key/value pairs and B-Tree indices over
tables. Although some design choices were made with Berke-
ley DB in mind, most of the choices should apply to any
generic relational database.

4. EXPERIMENTS

We assess the three indexing scheme in terms of loading
time, storage size, average children access time, average de-
scendant access time and serialization. For the purpose of
this comparitive study we implemented the three indexing
scheme using BerkeleyDB-4.2.1.

We decided to use XMark xml benchmarking tool in our
experiments as it allows to generate large XML documents
of different sizes, conforming to a standard schema. Since
jungle don’t handle typed documents we don’t use the xmark
schema in our experiments.

We carried our experiments on a 2.6 GHz Intel Pentium 4
processor machine with hyperthreading with 1 GB of main
memory and running Linux 2.6.4. In order to reduce the
inconsistencies we performed each experiment 5 times, dis-

carded the highest and the lowest number and took the me-
dian of the remaining.

NB: Loading and Footprint Loading time is refered
to the time taken to store a XML document using a se-
lected indexing scheme and Footprint is refered to the total
space occuppied by all the indices used in a selected indexing
scheme.

Table 4 gives the loading time (seconds) and footprint (megabytes)

Table 3: Children Access Time

Document Children Next Sibling Accel. XPath
Size Random Serial | Random Serial | Random Serial

1 8.88 8.58 12.69 11.88 51.92 56.58

5 10.02 9.12 14.21 12.58 61.23 62.98

10 10.31 9.27 14.63 12.71 66.19 63.34

15 10.51 9.35 14.77 12.81 58.18 63.65

20 10.62 9.37 15.03 1290 | 49.89 63.76

25 10.73 9.36 15.36 13.02 68.70 64.18

30 10.78 9.38 15.35 12.51 | 50.46 64.39

for xml documents of different sizes under the three indexing
schemes. Loading time is reasonable and approximately the
same for the three indexing schemes. Footprints under the
three indexing scheme are also reasonable and comparable
to that of typical main memory dom implementations. For
e.g. main memory dom materialized by Xerces is in general
5 times the size of the xml document.

Although Children technique and Next Sibling technique
stores the same kind of information, use of fixed size data
in the later approach yields a compact representation and
slightly better loading time.

In accelerated XPath technique we need to create fewer in-
dex structures but creating postorder index during parsing
the document in document order results in continous rebal-
ancing of the binary tree which stores the postorder. This
results in same loading time and a 12 percent higher foot-
print in comparison to the children approach.

Table 2: Loading time and Footprint

Document Children Next Sibling | Accel. XPath
Size time size time size time size
(mb) (sec) (mb) (sec) (mb) (sec) (mb)

1 2 472 2 4.26 2 5.22

5 15 20.96 12 20.18 15 23.44
10 31 42.09 25 40.48 30 4721
15 47 54.21 37 61.38 45 61.67
20 66 86.34 53 84.29 64 96.71
25 83 97.86 | 67 105.59 79 110.93
30 101 145.14 | 84 127.14 95 161.12

NB: Child Axis

As mentioned earlier access to children is a basic and im-
portant datamodel operation. We refer the time required to
access all the children of a node using a selected indexing
technique as children access time. Table 4 gives the average
children access time for randomly selected node and nodes
accessed in document order.

To access children for a node, accelerating XPath technique
accesses all the descendant in comparison to children index
technique which requires a single lookup to find all the chil-
dren and hence later is faster by a factor of approx. 10. The
overhead of multiple lookup in case of next sibling approach
reflects in the 40 percent increased children access time.

NB: Descendant Axis Descendant access time is ref-
ered to the time required to access all the descendant of
a node in a selected indexing technique. In Children index
technique and first sibling technique we evaluate descendant

using recursive calls to children, where as accelerated xpath
technique uses the descendant window.

As shown in Table 4 the descendant access time in children
index technique is faster by a factor of 3 in comparison to
accelerated XPath technique and by a factor of 2 in com-
parison to next sibling approach. Although the children axis
and accelerated XPath techniques access the same number
of records the overhead in later is result of window compar-
ison.

Table 4: Descendant Access Time
Document | Children | Next Sibling | Accel. XPath
Size Avg Avg Avg
1MB 22.94 45.46 108.34
5MB 56.72 108.62 183.65
10MB 70.53 122.79 206.81
15MB 62.66 110.44 193.02
20MB 68.88 125.39 208.40
25MB 73.12 131.41 217.17
30MB 83.73 146.85 222.30

NB: Cursor Based Child Access

Table 5: Children Access Time

Document | Children | Next Sibling | Accel. XPath
Size Random Random Random
1 9.22 12.83 52.56
5 10.56 14.57 62.64
10 10.73 14.77 67.34
15 10.58 14.68 58.63
20 10.81 14.93 50.05
25 10.98 15.27 69.67
30 11.04 15.42 50.83

NB: Serialization

5. RELATED WORK

Indices in recently proposed indexing schemes can be roughly
categorized into Structure indices, Value indices and Path
indices. Example of a structure index is the children index,
that of value index are the element name index and the at-
tribute value index. Path index as the name suggest, could
be considered as the hybrid of the structure and value index
as it encodes information about structure as well as value.

Timber [9] (maybe) complete implementation of XQuery.
Uses Shore as storage manager. (Pre, Post, Level) label-

Table 6: Serialization

Document | Children | Next Sibling
Size Avg Avg
1MB 3 3
5MB 15 16

10MB 30 29
15MB 46 46
20MB 64 64
25MB 79 80
30MB 95 96

ing for efficient ancestor/descendant access. Same problem
as accelerated-XPath technique — inefficient child axis and
serialization. Closest to our work vis a vis scope.

Storage and indexing techniques for XML is an active re-
search area.

Structure: Grust [7]
Value:

Cooper et al [3] : Path index, cannot recover original struc-
ture of document, use Patricia tries to encode paths to val-
ues in documents. Cannot recover relative document/sibling
order of internal nodes in XML document.

Li and Moon [11] : contains both structure and value indices.
For each tag name, can access extent of all nodes with that
tag name. First of techniques that use numbering to sup-
port efficient implementation of axes (ancestor-descendant).
Decomposition of regular path expressions into small path
expressions, whose results can be joined.

Tatarinov et al [14] : hybrid of structure and path tech-
niques. Core is Edge storage, instead of storing tag name,
store path of tags.

Path: ViST [8] (pre-order representation of tree, each node
represented by a symbol, document is string of pre-order
walk of tree. Permits efficient implementation of path ex-
pressions. Unclear how serialization of results is handled,
also document-order queries)

It is understood that no single indexing scheme is best for
all types of queries. For example path indices are better
than structure indices in evaluation of simple path queries,
but they do not address the needs of branching queries and
queries with predicates. Without additional information
path index cannot ensure the correct document order in
the query result, while document order is inherent in many
structure indices.

The key factor in evaluation of indexing schemes is the ” Ac-
cess Time” i.e. the time it takes to find a particular data
item. Equally important factors in evaluation of an index-
ing scheme are insertion time, deletion time and space over-
head. Most of the current work mainly considers queries
i.e. the access time, and few [12, 13] focus on reducing the
index overhead. There is no emphasis on the cost involved
in maintaining those indices in the presence of updates.

Indexes are always difficult to maintain in presence of up-
dates and so is clustering of the data.

6. CONCLUSION & FUTURE WORK
NB: Updates

We realize that clustering schemes and their maintainance
is important for query performance, in this paper we focus
mainly on former.

Issues in maintaining indices in presence of updates in re-
lational databases are well known. XML imposes new re-
quirement of maintaining document order in presence of up-
dates. Inserts in XML could be postional which necessitates
reordering of the data in addition to indices.

Typically node identifiers [16] apart from uniquely identify-
ing the nodes in the tree representation of the document,
have been used for ordering nodes and encoding contain-
ment relationships among the nodes. The main implication
of supporting updates is thus support the renumbering or
relabelling of these node identifiers.

Recent work in indices which support updates [15, 9, 8], try
to delay renumbering of the nodes by leaving space between
nodeids allocated to two successive nodes. A typical exam-
ple is to use of floating point number for nodeids. Due to
localized insertions or insertion of large subtrees, the space
at a insert location may run out thus node renumbering be-
comes unavoidable.

To the best of our knowledge, no indexing scheme facilitates
node renumbering or proposes an incremental node renum-
bering algorithm.

6.0.1 Problem with updates

In presence of updates, one cannot avoid node renumber-
ing completely. Most of the recent work [9, 15] focuses on
node numbering schemes to delay the process of renumber-
ing the nodes as much as possible. When node renumbering
becomes unavoidable they do renumbering of the complete
document tree.

We identify node renumbering as a major issue affecting
choice and design of XML indexes supporting updates. Also
any additional indexes created to improve the query prefor-
mance needs to be updated.

For example in this scheme in addition to updating the main
records, we also need to reflect the changes of node renum-
bering in child index.

If we want to insert a subtree shown in Fig 5. as a child of
”c” between ”d” and ”e”. If we were to do node renumbering
at this point, we need to renumber every node which follows
node ”d” in pre-order traversal of the original tree. In the

.9

Fig 2 (again) such nodes are marked with 7~

The cost and complexity for updating a Child index such as
above would be high. Infact a complete scan of the index is
required to update it.

7. REFERENCES

1]
2]

[10]

[11]

[13]

[14]

[15]

[16]

Berkeley DB product. http://www.sleepycat.com/.

S. Boag, D. Chamberlin, M. F. Fernandez,

D. Florescu, J. Robie, and J. Siméon. XQuery 1.0 An
XML Query Language, W3C Working Draft, Nov
2003. http://www.w3.org/ TR /xquery.

B. Cooper, N. Sample, M. Franklin, and M. Shadmon.
A fast index for semistructured data. In VLDB,
September 2001.

K. Deschler and E. Rundensteiner. MASS: A
multi-axis storage structure for large XML documents.
In CIKM, 2003.

M. Fernandez, J. Siméon, B. Choi, A. Marian, and
G. Sur. Implementing XQuery 1.0: The Galax
Experience. In Proceedings of International
Conference on Very Large Databases (VLDB), pages
1077-1080, Berlin, Germany, Sept. 2003.

K. Fisher and R. Gruber. Pads : Processing arbitrary
data streams. In Workshop on Management and
Processing of Data Streams, June 2003.

T. Grust. Accelerated XPath location steps. ACM
SIGMOD, 15(5):795-825, June 2002.

W. F. Haixun Wang, Sanghyun Park and P. S. Yu.
ViST : A dynamic index method for querying XML
data by tree structures. In ACM SIGMOD, pages
110-121, June 2003.

H. Jagdish et al. Timber: A native XML database.
ACM SIGMOD, page 672, June 2003.

C. C. Kanne and G. Moerkotte. Efficient storage of
XML data. 2000.

Q. Li and B. Moon. Indexing and querying xml data
for regular path expressions. In VLDB, September
2001.

H. K. S. Abiteboul and T. Milo. Compact labelling
schemes for ancestor queries. In ACM-SIAM
Symposium on Descrete Algorithms (SODA), January
2001.

S.Alstrup and T. Rahue. Improved labeling scheme for
ancestor queries. In ACM-SIAM Symposium on
Descrete Algorithms (SODA), January 2002.

I. Tatarinov, S. D. Viglas, K. Beyer,

J. Shanmugasundaram, E. Shekita, and C. Zhang.
Storing and querying ordered XML using a relational
database system. ACM SIGMOD, pages 204215,
June 2002.

M. Y. Toshiyuki Amagasa and S. Uemura. QRS : A
robust numbering scheme for xml documents. ICDE,
pages 291-301, June 2003.

W3C. XQuery 1.0 and XPath 2.0 data model. W3C,
15(5):795-825, June 2002.

