
Build your own XQuery processor

Mary Fernández, AT&T Labs Research

Jérôme Siméon, IBM T.J. Watson Research Center

1

I want to thank Gottfried for inviting me to speak to you at

BTW. He assured me that I would not have to speak in German,

which was a huge relief, because my German is entirely restricted

to nouns and only those having to do with food, wine and opera.

Last year, I had the chance to speak about XQuery and Galax

at two XML workshops and for those talks, I decided to prepare

written remarks – which is a bit more formal than computer

scientists are accustomed to – but it worked so well, I decided

to do it.

Today, I’m going to talk to you about Galax, our implementation

of XQuery 1.0. Galax is joint work with Jérôme Siméon of IBM

Research and many great collaborators, who I will name at the

end.

I am not going to justify XQuery’s existence or give you an

XQuery tutorial although I will show some sample queries and

give you some references so you can learn more. I assume that

you have some basic knowledge of XML and XQuery, of query

processing, and of how a typical database engine works.

My goal is to convince you, in particular students, that building a

software artifact that is used by someone other than the architect

himself(herself) can lead to a lot of interesting research.

Part I

Introduction

2

Why another talk on XQuery?

I What you should have learned so far:

I What is XQuery?

I General XQuery processing principles

I XML storage and indexing techniques

I XQuery optimization

I XQuery on top of a relational system

I What is missing?

I How to put all the pieces together...

I ...to build a real XML query engine

3

Requirements & Technical Challenges
I Completeness

I Complex implicit semantics

I Functions & modules

I ... many more ...

I Performance

I Nested queries

I Memory management

I ... many more ...

I Extensibility

I Variety of XML & non-XML data representations

I Updates

I ... many more ...

4

So during Galax’s evolution, we have continuously juggled three

primary requirements: completeness, performance, and extensi-

bility. Trying to satisfy all these requirements at once has the

potential pitfall of making Galax a “Jack of all trades but mas-

ter of none.” But we have found that by never sacrificing one

requirement for an other, we have been able to build a devoted

user group.

Each requirement has a related set of technical challenges and

these challenges have influenced the development of the Galax

architecture. For each requirement, I’d like to quickly illustrate

one corresponding challenge and mention one user for whom this

requirement was critical.

Completeness: Implicit Semantics
I User: Bleeding-edge XQuery Users

I Implicit XPath semantics

$cat/book[@year > 2000]

I Atomization

I Type promotion and casting

Presence/absence of XML Schema types

I Existential quantification

I Document order

I Advanced Features

I Schema import and typing

I Functions and modules

I XQuery implementation language for DSLs

I Constraint checking on network elements

I Semi-automatic schema mapping

5

The XQuery working group was the first user to require com-

pleteness, but today, all our users expect completeness.

Satisfying the completeness requirement obviously requires that

Galax implement all of XQuery, including its sub-language XPath

2.0. Path expressions are central to XQuery, so you might think

they should be pretty straightforward, but XPath 2.0 expressions

have a deceivingly complex implicit semantics.

Here’s an innocuous looking path expression that selects all

books in a catalog that have a year attribute whose value is

greater than 2000. What are its implicit semantics?

First, whenever an aritmetic or comparison operator is applied

to node value, the node’s atomic content is extracted, which is

known as atomization.

When comparing two atomic values, implicit rules of type pro-

motion and casting are applied. For example, when comparing a

decimal and a float, the decimal is promoted to a float. XPath

also distinguishes between node content that has been validated

against an XML Schema type and that which has not. Unvali-

dated content is always cast to a target type whereas validated

content is not.

All comparison operators are existentially quantified, so if more

than one node or atomic value exists, then the predicate is true

if any one value satisfies the predicate.

Finally, a path expression always yields its node values in docu-

ment order with no duplicates.

We could argue long and loud about whether a little path ex-

pression should be so heavy weight – and trust me, I’ve already

heard every argument in favor and against – but this is what the

specification states and this is what Galax implements.

Performance: Nested Queries
I User: IBM Clio Project

Automatic XML Schema to XML Schema Mapping

I Nested queries are hard to optimize (XMark #10):

for $i in distinct-values($auction/site/..../@category)
let $p :=

for $t in $auction/site/people/person
where $t/profile/interest/@category = $i
return

<personne>
<statistiques>

<sexe> { $t/profile/gender/text() } </sexe>
<age> { $t/profile/age/text() } </age>
<education> { $t/profile/education/text() } </education>
<revenu> { fn:data($t/profile/@income) } </revenu>

</statistiques>
....

</personne>
return <categorie><id>{ $i }</id>{ $p }</categorie>

I Näıve evaluation O(n2)

I Recognize as group-by on category and unnest

6

You are all probably quite familiar with the problems of evaluating

XQuery efficiently.

One language feature most notoriously absent from XQuery

is group-by, which can be expressed in XQuery using nested

FLWOR expressions.

The IBM Clio project, for example, has a semi-automatic system

for generating mappings between closely related XML Schemas.

They generate deeply nested FLWOR expressions, which are hard

to evaluate efficiently.

The XMark 10 query is a simple example of a group-by expressed

using nested FLWORS, but this query is a walk in the park

compared to the queries generated by Clio.

This expression re-groups all people in an auction by the cat-

egories in which they are interested. A näıve evaluation would

iterate over the input document once for each category value.

The key problem here is to recognize the nested FLWORS ex-

press a group-by and produce an unnested evaluation plan.

Until recently, Galax used a top-down, naive evaluation plan for

nested FLWORS, but our most recently released version now

produces un-nested evaluation plans.

Interestingly, our users have never demanded that Galax be the

fastest implementation, but instead required that such queries

always yield the right result. They wait patiently for Galax to

produce faster query plans but not at the expense of complete-

ness.

Extensibility: Querying Virtual XML
I User: AT&T PADS (Processing Ad Hoc Data Sources)

I Declarative data-stream description language

I Detects & recovers from non-fatal errors in ad hoc data

I Query Native HTTP Common Log Format (CLF)

207.136.97.49 - - [15/Oct/1997:18:46:51 -0700] "GET /turkey/amnty1.gif HTTP/1.0" 200 3013
anx-lkf0044.deltanet.com - - [15/Oct/1997:21:13:59 -0700] "GET / HTTP/1.0" 200 3082
152.163.207.138 - - [15/Oct/1997:19:17:19 -0700] "GET /asa/china/images/world.gif HTTP/1.0" 304 -

I Virtual XML view

<http-clf>
<host><resolved>207.136.97.49</resolved></host>
<remoteID><unknown/></remoteID>
<auth><unauthorized/></auth>
<mydate>15/Oct/1997:18:46:51 -0700</mydate>
<request><meth>GET</meth><req_uri>/turkey/amnty1.gif</req_uri><version>HTTP/1.0 ...
<response>200</response>
<contentLength>3013</contentLength>

<http-clf>

I Using XQuery to explore data

I Hosts of records with content length greater than 2K

fn:doc("pads:data/clf.data")/http-clf[contentLength > 2048]/host

7

One requirement that we did not anticipate but that has become

central to Galax is extensibility, in particular, support for querying

virtual XML data sources.

Kathleen Fisher, my colleague at AT&T is the inventor of PADS,

a language that permits data analysts to describe declaratively

the format of complex legacy data sources, of which there are

numerous examples in our lab. PADS can describe just about

anything: fixed and variable-width records in EBCIDIC, ASCII,

or UTF-8, COBOL copy books, and binary data of any kind.

Hers’s a simple example of the kind of data that PADS can de-

scribe: the HTTP common log format, which has a high degree

of syntactic and structural variability.

From a PADS description (not shown here), the PADS compiler

generates a library of functions for parsing a data source. A

key feature of PADS is that it gracefully recovers when a syntax

error is detected in a data stream and can identify the cause and

location of an error to the application using the parsing library.

Kathleen wanted to be able to view PADS data sources as XML

so that PADS users could use XQuery to perform simple querying

tasks declaratively. We were able to support this application by

exposing Galax’s data-model abstract in an API.

The outcome is that PADS users can view their data as virtual

XML and write queries such as the following, which returns the

hosts of CLF records whose content-length is greater than 2K.

So now you know a little about Galax’s history and the kinds of

requirements that we face as Galax evolves.

What is this course about?

I Teach you how to build a real XQuery engine

I How are you sure you implemented the right language?

I How to put the techniques you have learned to practice

I Focus on how the various techniques interact

I Explain what matters in practice

I How do you apply the “theory” in a real system

I How do you make it run fast?

I Focus on architecture and implementation issues

I Teach you enough of Galax’s internal

I Learn how to use it

I Learn how the code is organized

I Learn how to change it

8

What you need

I This course assumes:

I Some user-level knowledge of XML and XQuery

I Some minimal programming experience

I Is also helpful, but not required:

I Some knowledge about query processing (e.g., relational)

I Some idea of how a typical database engine works

9

Part II

Preliminaries: Galax and Caml

10

What is Galax?

I Complete, extensible, performant XQuery 1.0 implementation

I Functional, strongly typed XML query language

Query Optimizer

Query Evaluation

XML Schema
import

Static
Typing

Parser

Compiler

Galax Engine

Memory
Data Model

Data Model API

XQuery Applications

XML Documents
(Files, Messages,...)

API’s (C, Java, O’Caml)

XQuery Program

XML Schemata

 − XML 1.0
 − XML Schema 1.0
 − XQuery 1.0
 − XPath 2.0

 − XML Updates
 − WSDL Import

 − User−defined fctns.
 − User−defined DM

Core Features

Language Extensions

System Extensions

11

Galax is a complete, extensible implementation of XQuery 1.0

that processes XML documents, their schemas, and queries over

those documents.

Galax includes support for all of XML 1.0, including namespaces

and for most of XML Schema 1.0, which is the foundation of

the XQuery type system, and for all of XQuery 1.0, including

modules.

This figure is an executive summary of Galax’s current features.

In addition to the core support for XML, XML Schema, and

XQuery, Galax has two experimental language extensions: one

for updates and one for importing and exporting WSDL-defined

Web services to/from XQuery.

Galax also has two system extensions that support execution of

user-defined functions, written in either C or O’Caml, and for

user-defined implementations of the Galax data model, which

makes it possible for Galax to evaluate queries simultaneously

over non-native and native XML sources.

Like most large systems, Galax has evolved over time. I’d like to

describe Galax’s history as it illustrates well how different forces

have impacted Galax’s evolution and our own research interests.

Galax History

Executable
Semantics

GUPster (Lucent)

PADS (AT&T)

2000 2001 2002 2003 2004 2005

Reference
Implementation

Work on static
typing & XQuery
semantics

XML Algebra
Demonstration

Users

Get W3C to
adopt XML
query algebra

Goals

Advanced
XQuery users
(module support, etc.)

Promote
conformance &
adoption of XQuery

UMTS (Lucent)

W3C XML
Query WG

Early XQuery
adopters/
implementors

 Universities

Complete & extensible
implementation
with optimizer

Back to research
Optimization problems
Users’ needs

Implementation

Us!

12

Jérôme and I have both been members of the W3C’s XML Query

working group since its inception in 2000.

Galax’s implementation closely follows the goals of our work in

the XQuery group and the requirements of current and prospec-

tive users in our respective research labs.

Our first goals were to specify a simple, orthogonal query lan-

guage for XML that captured much of the existing semantics of

XPath as well as the features of earlier languages, such as XML-

QL, YaTL and others, and to satisfy the language requirements

being debated by the XQuery working group.

We called this langauge the XML query algebra. Our implemen-

tation of this little algebra became a useful demonstration tool

for us within the XQuery working group, and this implementa-

tion was the first version of Galax. At this point, we were the

only users of the system.

Galax History

Executable
Semantics

GUPster (Lucent)

PADS (AT&T)

2000 2001 2002 2003 2004 2005

Reference
Implementation

XML Algebra
Demonstration

Users

Get W3C to
adopt XML
query algebra

Goals

Advanced
XQuery users
(module support, etc.)

Promote
conformance &
adoption of XQuery

UMTS (Lucent)

W3C XML
Query WG

Early XQuery
adopters/
implementors

 Universities

Complete & extensible
implementation
with optimizer

Work on static
typing & XQuery
semantics

Back to research
Optimization problems
Users’ needs

Implementation

Us!

13

Early on, we along with our colleagues Phil Wadler and Peter

Fankhauser championed for XQuery to be a strongly typed query

language with a formal semantics.

After the first demo of the algebra, our focus shifted to specifying

a complete operational semantics, both static and dynamic, for

the fledgling XQuery language.

As editors of the XQuery formal semantics, we would alternate

between writing XQuery’s formal definition and implementing the

semantics in Galax. At this point, the implementation served as

an executable semantics for debugging the language, and our

users included a few other members of the XQuery working

group.

Galax History

Executable
Semantics

GUPster (Lucent)

PADS (AT&T)

2000 2001 2002 2003 2004 2005

Reference
Implementation

XML Algebra
Demonstration

Users

Get W3C to
adopt XML
query algebra

Goals

Advanced
XQuery users
(module support, etc.)

Promote
conformance &
adoption of XQuery

UMTS (Lucent)

W3C XML
Query WG

Early XQuery
adopters/
implementors

 Universities

Complete & extensible
implementation
with optimizer

Work on static
typing & XQuery
semantics

Back to research
Optimization problems
Users’ needs

Implementation

Us!

14

After the XQuery working drafts became public, our goals shifted
toward promoting the language to potential users, for example,
by teaching XQuery to the existing XML community (mostly
SGML people) and to the database-research community and by
showing how XQuery meets the needs of a wide variety of classes
of XML querying tasks.

During this period, Galax evolved into a reference implementa-
tion that could actually be used by early adopters of XQuery. Lu-
cent researchers and developers were early and aggressive users
of XQuery and Galax’s first real users.

The UMTS system, for example, has a declarative language for
expressing consistency constraints on telephone switch configu-
rations. The language is translated into large XQuery programs,
which are then run by Galax to check the constraints. Because
this application runs in a production environment, we quickly had
to make Galax more reliable and efficient, provide stable APIs
and a basic secondary storage system for large XML documents.
In general, we had to make Galax behave more like a product
and less like a research prototype.

Galax History

Executable
Semantics

GUPster (Lucent)

PADS (AT&T)

2000 2001 2002 2003 2004 2005

Reference
Implementation

XML Algebra
Demonstration

Users

Get W3C to
adopt XML
query algebra

Goals

Advanced
XQuery users
(module support, etc.)

Promote
conformance &
adoption of XQuery

UMTS (Lucent)

W3C XML
Query WG

Early XQuery
adopters/
implementors

 Universities

Complete & extensible
implementation
with optimizer

Work on static
typing & XQuery
semantics

Back to research
Optimization problems
Users’ needs

Implementation

Us!

15

During this period, we did not attempt to investigate or solve

open research problems, the most significant being devising al-

gorithms for efficient XQuery evaluation, nor did we choose to

apply particular algorithms or techniques that were proposed in

the research literature.

Instead, we focussed on building a complete and extensible im-

plementation, by essentially working top down. This strategy

served us well, because it helped us to attract more real users to

XQuery and to Galax than we would have been able to attract

if we had pursued a more bottom-up implementation strategy.

Now that we have had a chance to see how people are using

XQuery and Galax, we are returning to the fundamental problems

of efficient query evaluation, studying and applying optimization

techniques, but all the while keeping our users’ needs in mind.

Our user base is getting bigger, too.

Message: Research often works bottom up but we are working

top down.

Getting Galax

I The Galax Web site is at:

http://www.galaxquery.org/

I The Galax distributions are at:

http://www.galaxquery.org/distrib.html

I The source distribution is at:

http://www.galaxquery.org/Downloads/download-galax-0.4.0-source.html

16

Installing Galax from the source

// The source distribution

simeon@localhost ~/NEW > ls -la
total 1596
drwxrwxr-x 8 simeon simeon 4096 Sep 1 06:12 .
drwx------ 94 simeon simeon 8192 Sep 1 06:09 ..
-rw-rw-r-- 1 simeon simeon 1590932 Sep 1 06:12 galax.tar.gz

// Un-packing

simeon@localhost ~/NEW > cat galax.tar.gz | gunzip | tar xvf -
galax/
galax/Makefile
galax/.depend
galax/BUGS
galax/Changes
galax/LICENSE
..........
simeon@localhost ~/NEW > cd galax
simeon@localhost ~/NEW/galax > ls
algebra galapi parsing ...
analysis datamodel jungledm physicaldm ...

17

Installing Galax from the source (2)

// Configuring

simeon@localhost ~/NEW/galax > cp config/Makefile.unix config/Makefile
simeon@localhost ~/NEW/galax > emacs config/Makefile

// Compiling

simeon@localhost ~/NEW/galax > make
make world
make[1]: Entering directory ‘/home/simeon/NEW/galax’
make prepare
make[2]: Entering directory ‘/home/simeon/NEW/galax’

* Preparing for compilation *

.......

// Installing

simeon@localhost ~/NEW/galax > make install
.......
simeon@localhost ~/NEW/galax >

18

Using Galax from the command line

// Run a query

simeon@localhost ~ > cat example1.xq
(: Find the 3rd author of the first book :)
doc("book.xml")//book[1]/author[3]
simeon@localhost ~ > galax-run example1.xq
<author>Dan Suciu</author>

// Run a query with an input document

simeon@localhost ~ > cat example2.xq
(: Find the 3rd author of the first book :)
//book[1]/author[3]
simeon@localhost ~ > galax-run example1.xq -context-item book.xml
<author>Dan Suciu</author>

19

Using Galax from the command line

// Compile a query

simeon@localhost ~ > cat example3.xq
(: Find all title of books published in 2000 :)
for $b in doc("xmpbib.xml")//book
where $b/@year = 2000
return $b/title
simeon@localhost ~ > galax-compile -verbose on example3.xq

-print-normalized-expr on
Normalized Expression (XQuery Core):

for $b in (

fs:distinct-docorder((let $fs:sequence :=
...

(data(("xmpbib.xml" as item()*)) as atomic()*),
.....

Optimized Normalized Expression (XQuery Core):
--
for $b in (doc("xmpbib.xml")...
.....
return

if (
boolean(some $fs:v4 ...

20

Using Galax to Validate Documents

// A valid document

simeon@localhost ~ > cat book.xml
<book>

<title>Data on the Web</title>
<author>Serge Abiteboul</author>
...
<section>

<title>Introduction</title>
...

simeon@localhost ~ > galax-parse -xmlschema book.xsd -validate book.xml
simeon@localhost ~ >

// An invalid document

simeon@localhost ~ > cat book-err.xml
<book>

<title>Data on the Web</title>
<author>Serge Abiteboul</author>
...
<section ID="intro" difficulty="easy" >

<title>Introduction</title>
...

simeon@localhost ~ > galax-parse -xmlschema book.xsd -validate book-err.xml
Validation Error: No matching declaration for attribute ID in content model

21

Using Galax from C or Java

// A main program in Java

import galapi.*;
public class Example {

static void example1 (ModuleContext mc) throws GalapiException {
ItemList r =

Galax.evalStatementFromString (mc, "doc(b̈ook.xml)̈//book[1]/author[3]");
Galax.serializeToStdout (r);

}// example1()
public static void main (String args[]) throws GalapiException {

Galax.init ();
ProcessingContext pc = Galax.defaultProcessingContext ();
ModuleContext mc = Galax.loadStandardLibrary (pc);
example1 (mc);

}// main()
}// class Example

// Compiling it

simeon@localhost ~ > javac Example.java

// Running it

simeon@localhost ~ > java Example
<author>Dan Suciu</author>

22

Galax source distribution (1)

// Documentation
./Changes
./LICENSE
./doc
./README
./TODO

// Compilation and configuration
./Makefile
./config

// Examples and tests
./examples
./usecases
./regress

// Web site and demo
./website

23

Galax source distribution (3)

// Core Galax engine sources
./base // some basic modules (e.g. I/O)
./fsa // DFA/FSA library
./namespace // XML names and namespaces
./datatypes // XML Schema datatypes
./ast // Main XQuery AST’s
./print // Pretty printing for the AST’s
./dm // XML data model (virtual)
./procctxt // XQuery processing context
./rewriting // AST generic tree walker
./lexing // XML/XQuery lexing
./parsing // XML/XQuery parsing
./streaming // SAX support
./serialization // XML serialization

24

Galax source distribution (4)

./monitor // Compilation monitoring support

./schema // XML Schema support

./wsdl // Web services support

./normalization // XQuery normalization

./projection // Document projection

./datamodel // Main-memory data model (DOM-like)

./stdlib // XQuery Functions and Operators

./jungledm // File indexes

./typing // Static typing

./cleaning // ‘‘syntactic’’ rewritings

./analysis // Static analysis

./compile // Algebraic compilation

./optimization // Algebraic optimization

./algebra // Evaluation code

./evaluation // Evaluation engine

./procmod // XQuery processing model

25

Galax source distribution (5)

// External libraries
./tools

// APIs
./galapi

// Command-line tools
./toplevel

// Galax extensions
./extensions

26

Caml survival kit (1)

I Caml is a lot like XQuery

define function f($x as xs:integer) as xs:integer {
if ($x > 0) then $x + 2 else -$x+2

}

(: One call to f :)
let $a := 1 return f($a)

==>
- : xs:integer = 3

I In Caml:

let f x = if (x > 0) then x+2 else -x+2;;
val f : int -> int = <fun>
(* One call to f *)

let a = 1 in f(a);;
- : int = 3

27

Caml survival kit (2)
I Caml is open source

I Caml is portable

I Caml generates efficient code

I Caml is a functional language (like XQuery)

I Caml is strongly typed (more than XQuery)

I Caml supports modules (much more than XQuery)

I Caml supports imperative feature (like Pascal)

I Caml supports object-oriented features (like Java)

I Caml has a good C interface (calling Caml from/to C)

I Caml is very well suited for program manipulation

http://caml.inria.fr/

28

Caml survival kit (3)

I Function signatures:

(* Function taking a boolean and returning a boolean *)

val not : bool -> bool

(* Function taking 2 integers returning one integer *)

val (+) : int -> int -> int

(* Function taking a norm_context, and expression and
returning a core expression *)

val normalize_expr : norm_context -> expr -> ucexpr

29

Caml survival kit (4)

I Creating types

// A new string type (for XML local names)

type ncname = string

// A new choice type (for namespaces prefixes)

type prefix =
| NSDefaultPrefix
| NSPrefix of ncname

// A new tuple type (for unresolved QNames)

type uqname = prefix * ncname

// A new record type (for XQuery main modules)

type xquery_module =
{ xquery_prolog : prolog;

xquery_statements : statement list }

30

Caml survival kit (5)

I Modules and compilation

I Code organized in files

I Each source file = a module

I ./normalization/norm top.ml = Module Norm top

I Modules can have an Interface

I Interfaces can export types, functions, and values

I ./normalization/norm top.mli = Interface for Norm top

I Modules can access what is exported.

// Calling a function in a module
let ctxt = ... in
let expr0 = ... in
Norm_top.normalize_expr ctxt expr0

// Opening a whole module
open Norm_top

let ctxt = ... in
let expr0 = ... in
normalize_expr ctxt expr0

31

Caml survival kit (6)

I Compiling Caml code:

// Compile a module to bytecode

ocamlc -I INCLUDES... -c ./normalization/norm_top.mli --> norm_top.cmi
ocamlc -I INCLUDES... -c ./normalization/norm_top.ml --> norm_top.cmo

// Compile a module to native code

ocamlopt -I INCLUDES... -c ./normalization/norm_top.ml --> norm_top.cmx
+ norm_top.o

// Compile a main program (native code)

ocamlopt -I INCLUDES... -o galax-run/normalization/norm_top.cmx ...

32

Part III

Architecture

33

Galax’s Architecture

I Architecture is composed of processing models for:

I XML documents

I XML schemas

I XQuery programs

I Processing models are connected, e.g.,

I Validation relates XML documents and their XML Schemata

I Static typing relates queries and schemata

I Each processing model based on formal specification

I Interfaces between processing models well-defined & strict

(e.g., strongly typed)

34

Galax processes XML documents, their schemas, and queries
over those documents, so, not surprisingly, Galax’s architecture
is composed of processing models for documents, schemas, and
XQuery programs.

Processing models produce various representations of docu-
ments, schemas, and queries, and their phases connect these
representations. For example, validation relates XML documents
to their schemas and static typing relates queries and schemata.

If you learn one thing today, I’d like it to be that the implemen-
tation of each of Galax’s processing models is based on a formal
specification. This design choice has made it possible for us to
keep up with the rapid changes to XQuery’s definition.

In addition, the interfaces between processing models are strictly
typed, which makes it very clear how phases can be composed
and ordered.

To make this more concrete, I’m going to walk you through the
three processing models one step at a time. By the end, you
should have a good understanding of how Galax works.

Architecture References

I Very little research references

I General text books:

I Traditional DB query compiler books (e.g., Widom’s)

I Traditional PL compiler books (e.g., Appel’s)

I About XQuery:

I XQuery processing model (part of W3C spec)

I “Implementing XQuery by the Book”, Fankhauser et al,

SIGMOD Records.

I “Building an XQuery processor”, XSym’2004

35

XML Processing Architecture

XML
Parser

XML
Stream Schema

Validation

XML
Instance
Document Data Model

Loading

Typed
XML Stream

XML
Stream

XML
Instance
Document

Typed
XML Stream

XQuery
Data Model

Export
Stream

Erase
TypesSerialization

XML Schema

XML Processing

XQuery
(Evaluation)

XQuery
(Evaluation)

<catalog>
<book year="1994">

<title>TCP/IP Illustrated</title>
<author>Stevens</author>

</book> ...

startDoc
startElem(catalog) element(catalog) ...

startElem(book) element(book) ...
startElem(title) element(title)

[xsd:string("TCP/IP Illustrated")]
chars("TCP/IP Illustrated")

endElem
startElem(author) element(author)

[xsd:string("Stevens")]
chars("Stevens")

endElem ...

I Reference: XML, Infoset, XML Schema (PSVI), DM Serialization

36

This picture illustrates Galax’s XML processing model.

This processing model takes native XML documents as input

and produces native XML documents as output.

Many of the phases in Galax that transform representations of

XML documents take and yield streams of XML tokens. XML

tokens include, for example, start-document, start-element, text

nodes, etc. These tokens are similar to SAX events, however,

unlike SAX events which are typically implemented as call-back

functions, the streams are consumed by the next phase pulling

events, on demand, from the stream source.

If you are a functional language user, you can think of XML

streams as lazy lists.

So the XML parser yields a stream of XML tokens. Schema

validation consumes this stream and also takes type informa-

tion from the XML Schema processing model, and produces a

typed stream of XML tokens. That is, validation adds typing

information to the input stream.

Here’s the typed representation of the input document. Each

node has a type annotation and some nodes are also annotated

with their atomic values.

A typed XML stream is consumed directly by the XQuery pro-

cessing model and/or by a data-model loader phase, which cre-

ates an instance of Galax’s abstract tree data model. Currently,

Galax has two built-in data model loaders: one that creates an

in-memory representation of the document, and a second that

stores the document in relational indices in Berkeley DB. I’ll re-

turn to the data model later.

The out-bound phases are the inverses of the in-bound: export

takes a data model and yields a typed XML stream; erasure

takes a typed stream and yields an untyped XML stream; finally,

serialization takes a typed stream and yields an XML document.

This processing model religiously implements four related speci-

fications: XML 1.0, the XML Infoset, the post-schema validated

infoset (defined in XML Schema Part 1), and the XQuery data-

model serialization.

XQuery Processing Architecture

XQuery
Parser

 Static
Typing

 Query
Normalization

Query
 AST

 Query
Compiler

Syntactic
Rewritings

Typed
Core
Query AST

Core
Query AST

"Simplified"
Typed Core
Query AST

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery Processing

XML Schema

XML

 XQuery
 Program

 Logical
Query Plan

 Static
Analysis

Annotated
 Logical
Query Plan

I Inputs: XQuery program (main module, library modules) +

Instances of XQuery data model

I Output: Instance of XQuery data model

37

The heart of Galax is the XQuery processing model, which takes

as input an XQuery program, which consists of one main module

and zero or more library modules, and produces an instance of

the XQuery data model as output.

We’re going to look at each phase in this module in turn.

One remark on colors: all parsers are blue; phases that have more

than one implementation are orange—for example, static typing

has a default implementation in which all expressions are labeled

with a default type; weak typing, which applies a very simple

form of type inference; and full strong typing, which applies all

of XQuery’s static typing rules; all required phases that have one

implementation are green.

XQuery Processing Step 1: Parsing

XQuery
Parser

 Static
Typing

 Query
Normalization

 Query
Compiler

Syntactic
Rewritings

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery Processing

XQuery
 AST

Core
XQuery AST

Typed Core
XQuery AST

"Simplified"
Typed Core
XQuery AST

XML Schema

XML

XML Schema

 XQuery
 Program

Static
Analysis

 Logical
Query Plan

Annotated
 Logical
Query Plan

I Reference: XQuery 1.0 Working Draft

38

So XQuery parsing takes an XQuery program and produces an

abstract syntax tree of the XQuery language.

Clearly, this phase is defined by the grammar rules in the XQuery

spec.

XQuery Processing Step 2: Normalization

XQuery
Parser

 Static
Typing

 Query
Normalization

 Query
Compiler

Syntactic
Rewritings

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery Processing

XQuery
 AST

Core
XQuery AST

Typed Core
XQuery AST

"Simplified"
Typed Core
XQuery AST

XML

XML SchemaXML Schema

 XQuery
 Program

Static
Analysis

 Logical
Query Plan

Annotated
 Logical
Query Plan

I Rewrite query into smaller, semantically equivalent language

I Makes surface syntax’s implicit semantics explict in core

I Reference: XQuery 1.0 Formal Semantics

39

Query normalization takes an XQuery AST and rewrites it into

a smaller, semantically equivalent language, called the XQuery

Core.

The completeness requirement is met almost entirely by the nor-

malization phase, because it makes all of the implicit semantics

hidden in XQuery’s surface syntax explicit in the Core language.

Normalization is defined in the XQuery Formal Semantics, and

Galax’s implementation is an almost literal interpretation of the

formal definition.

XQuery Processing : Normalization (cont’d)
I XQuery expression:

$cat/book[@year >= 2000]

I Normalized into Core expression:

for $_c in $cat return
for $_b in $_c/child::book return

if (some $v1 in fn:data($_b/attribute::year) satisfies
some $v2 in fn:data(2000) satisfies

let $u1 := fs:promote-operand($v1,$v2) return
let $u2 := fs:promote-operand($v2,$v1) return
op:ge($u1, $u2))

then $_b
else ()

40

To illustrate, here’s the innocuous path expression from earlier in

the talk and its normalized representation in the Core language.

(I’ve actually already simplified the core a bit, but it’s close to

the normalized expression emitted by Galax.)

I’ve highlighted some of the Core expressions that capture some

of the implicit semantics. For example, the fn:data function

applies atomization to a sequence of nodes; the some-satisfies

expression is existential quantification; the fs:promote-operand

function applies the appropriate type promotion and casting

rules; and finally, because during normalization no type infor-

mation is available, we apply an overloaded, polymorphic com-

parison operator.

As written, this expression might be quite inefficient, but it cap-

tures the complete and correct semantics of the path expression.

XQuery Processing Step 3: Static Typing

XQuery
Parser

 Static
Typing

 Query
Normalization

Static
Analysis

 Query
Compiler

Syntactic
Rewritings

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery Processing

XQuery
 AST

Core
XQuery AST

Typed Core
XQuery AST

"Simplified"
Typed Core
XQuery AST

XML

XML Schema

 XQuery
 Program

Annotated
 Logical
Query Plan

 Logical
Query Plan

I Infers static type of each expression

I Annotates each expression with type

I Reference: XQuery 1.0 Formal Semantics

41

Static typing follows normalization: for each expression in the

Core AST, static typing infers the type of the expression and

produces the corresponding typed Core AST, much in the same

way as validation takes an XML stream and yields a typed XML

stream.

Static typing is boot-strapped with the types of global variables

and proceeds bottom-up, assigning types to leaves of the AST,

then inner nodes, etc. XQuery supports functions and modules

but it’s typing rules do not compute the fixed point type for

recursive functions, so the user has to provide them explicitly.

Like normalization, static typing is defined in the XQuery Formal

Semantics, and the implementation of each typing rule is a literal

interpretation of the formal definition.

XQuery Processing : Static Typing (cont’d)
I Core expression:

for $_c in $cat return
for $_b in $_c/child::book return

if (some $v1 in fn:data($_b/attribute::year) satisfies
some $v2 in fn:data(2000) satisfies

let $u1 := fs:promote-operand($v1,$v2) return
let $u2 := fs:promote-operand($v2,$v1) return
op:ge($u1, $u2))

then $_b
else ()

I Typed Core expression, given $cat : element(catalog)

for $_c [element(catalog)] in $cat [element(catalog)] return
for $_b [element(book)] in $_c/child::book [element(book)*] return

if (some $v1 in (fn:data($_b/attribute::year [attribute(year)]) [xs:integer]) satisfies
some $v2 in fn:data(2000) [xs:integer] satisfies

let $u1 [xs:integer] := fs:promote-operand($v1,$v2) return
let $u2 [xs:integer] := fs:promote-operand($v2,$v1) return
op:ge($u1, $u2) [xs:boolean])

then $_b [element(book)]
else () [empty()]

[element(book)?]

42

Assuming that we have an XML Schema for our book catalog

example, one possible typing of this Core expression is given

below.

I’ve added the type annotations in green – this is not valid

XQuery syntax – it’s just meant to illustrate the annotations

associated with expressions. For example, from a query pro-

log, we know that the type of the $cat variable is one catalog

element.

Even if strong static typing is not applied, there is always a

default typing. For example, the default annotation for variable

$b would be a single element – because the child axis always

yields a sequence of elements and a for-bound variable is always

bound to a single item, or element in this case.

Even without the more detailed knowledge that $b is is book el-

ement, knowing that it is always a single element can be useful.

XQuery Processing Step 4: Rewriting

XQuery
Parser

 Static
Typing

 Query
Normalization

 Query
Compiler

Syntactic
Rewritings

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery Processing

XQuery
 AST

Core
XQuery AST

Typed Core
XQuery AST

"Simplified"
Typed Core
XQuery AST

XML Schema

XML

 XQuery
 Program

 Logical
Query Plan

 Static
Analysis

Annotated
 Logical
Query Plan

I Removes redundant/unused operations,

type-based simplifications, function in-lining

I Example: “Optimizing Sorting and Duplicate Elimination in XQuery Path

Expressions”, DEXA 2005, Michiels, Hidders et al

43

Rewriting applies many of the standard simplification rules ap-

plied in compilers for functional and some object-oriented lan-

guages, such are removing unused variable definitions, inlining of

non-recursive functions, and applying type-aware simplifications.

One example of a Galax rewriting is described in the tech report

“A Systematic Approach to Sorting and Duplicate Elimination in

XQuery”. The algorithm analyzes a Core expression and detects

when intermediate steps in path expressions always yield nodes

in document order and nodes with no duplicates, and the corre-

sponding rewriting rule eliminates redundant operators that sort

by document order and remove duplicates.

This work merits its own talk, so I will give you a simpler example

of a common rewriting.

XQuery Processing : Rewriting (cont’d)
I Typed Core expression:

for $_c [element(catalog)] in $cat [element(catalog)] return
for $_b [element(book)] in $_c/child::book [element(book)*] return

if (some $v1 in (fn:data($_b/attribute::year [attribute(year)]) [xs:integer]) satisfies
some $v2 in fn:data(2000) [xs:integer] satisfies

let $u1 [xs:integer] := fs:promote-operand($v1,$v2) return
let $u2 [xs:integer] := fs:promote-operand($v2,$v1) return
op:ge($u1, $u2) [xs:boolean])

then $_b [element(book)]
else () [empty()]

[element(book)?]

I Simplified typed Core expression:

for $_b [element(book)] in $cat/child::book [element(book)*] return
if (op:integer-ge(fn:data($_b/attribute::year), 2000) [xs:boolean])
then $_b [element(book)]
else () [empty()]

[element(book)?]

44

Here’s our typed core expression, and the corresponding simpli-

fied expression.

We’ve used the typing information to make several simplifica-

tions, which are all straight-forward:

The first for expression is eliminated, because its input type is

already a singleton. The existential quantifications are elimi-

nated because a year attribute always contains an integer. The

overloaded comparison operator has been replaced by an integer-

comparison operator. Etc.

Note that rewriting of Core expressions is not the same as opti-

mization of query plans. Our goal here is to produce the smallest

Core expression that is semantically correct.

XQuery Processing Step 5: Compilation

XQuery
Parser

 Static
Typing

 Query
Normalization

Syntactic
Rewritings

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery Processing

XML Schema

XMLm

Typed Core
XQuery ASTXQuery

 AST
Core
XQuery AST

"Simplified"
Typed Core
XQuery AST

 XQuery
 Program

 Query
Compiler

 Static
Analysis

Annotated
 Logical
Query Plan

 Logical
Query Plan

I Introduces tuple & tree algebraic operators

I Produces näıve evaluation plan

“A Complete and Efficient Algebraic Compiler for XQuery”, ICDE 2006, Ré

et al

45

So far, our program representations have been clearly related

to the original query. Compilation substantially changes the

program representation by converting a top-down AST into a

bottom-up plan of algebraic operators.

Our algebra is a hybrid of well-known operators on tuples, such

as join, select, map and of operators on XML trees, some of

which are unique to Galax, such as the path-project operator.

A large part of the tuple fragment is derived from May, Helmer,

and Moerkotte’s nested, ordered tuple algebra.

We extend it to cover the entire XQuery language, including all

type operators, and we provide a more robust group-by operator.

XQuery Processing : Compilation (cont’d)
I Simplified typed Core expression:

for $_b [element(book)] in $cat/child::book [element(book)*] return
if (op:integer-ge(fn:data($_b/attribute::year), 2000) [xs:boolean])
then $_b [element(book)]
else () [empty()]

[element(book)?]

I Algebraic plan:

MapToItem
{ Input -> Input#b }
(Materialize

(Select
{op:integer-ge(fn:data(Step[@year](Input#b)), 2000)}
(MapConcat

{MapFromItem
{$v -> [b : $v]}
(fs:docorder((for $fs:dot in $cat return Step[child::book]($fs:dot)))) ++ Input}

([]))))

46

Here’s our query again, and here is it’s representation in our

algebra.

Not expecting you to parse this but what you should notice is

that compilation has turned the expression tree inside out. The

original expression is logically expressed top down, but the re-

sulting plan is expressed bottom up.

Many of these are tuple operators, which are implemented using

pull-based cursors, which permits for pipelined evaluation of the

query.

XQuery Processing Step 6: Static Analysis

XQuery
Parser

 Static
Typing

 Query
Normalization

 Query
Compiler

Syntactic
Rewritings

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery Processing

XQuery
 AST

Core
XQuery AST

Typed Core
XQuery AST

"Simplified"
Typed Core
XQuery AST

XML Schema

XML

 XQuery
 Program

 Logical
Query Plan

Annotated
 Logical
Query Plan Static

Analysis

I Introduces annotations for down-stream optimizations

I Example: “Projecting XML Documents”, VLDB 2003, Marian & Siméon

“Streaming XPath Evaluation”, Stark et al

47

Up to this point, I’ve essentially described the front-end of a

functional language compiler – all these phases on the top-half

of this dog leg.

As we turn the bend in the dog leg, we move into the backend of

a query-language compiler. Prior to June, the bottom half of this

dog leg didn’t exist and the evaluation phase simply interpreted

the typed Core AST top down.

Static analysis follows rewriting. This phase annotates the typed

Core AST with information that can be used in later phases, such

as compilation and optimization.

Path projection is one example of a static analysis and is de-

scribed in this paper by Amélie Marian and Jerome. Path pro-

jection takes a typed Core AST and determines a (possibly over-

lapping) set of paths that may be accessed in a source document.

This analysis can be used to prune an input document after val-

idation but before data loading and evaluation.

Another example is data-source analysis: it is sometimes use-

ful to know whether two expressions yield nodes that are from

the same document. Data-source analysis annotates expressions

with the set of documents in which its results may be contained.

We use data-source analysis to determine whether a query can

be evaluated entirely on an input token stream, e.g., because

the source is only scanned once.

XQuery Processing Steps 7: Optimization

XQuery
Parser

 Static
Typing

 Query
Normalization

 Query
Compiler

Syntactic
Rewritings

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery Processing

XQuery
 AST

Core
XQuery AST

Typed Core
XQuery AST

"Simplified"
Typed Core
XQuery AST

XML

 XQuery
 Program

XML Schema

 Logical
Query Plan

 Static
Analysis

Annotated
 Logical
Query Plan

I Step 7: Query Optimizer

I Produces better evaluation plan

I Query unnesting: detect joins and group-bys

48

Query optimization follows compilation and attempts to produce

a better evaluation plan. For example, query unnesting identifies

group-bys expressed by nested queries and produces a plan with

unnested operators. Pushing selections early in a plan is another

example.

Heuristic optimization – no cost model; simply want to avoid

quadratic behavior of nested for-loops.

XQuery Processing : Compilation (cont’d)
I Algebraic plan:

MapToItem
{ Input -> Input#b }
(Materialize

(Select
{op:integer-ge(fn:data(Step[@year](Input#b)), 2000)}
(MapConcat

{MapFromItem
{$v -> [b : $v]}
(fs:docorder((for $fs:dot in $cat return Step[child::book]($fs:dot)))) ++ Input}

([]))))

I Optimized algebraic plan:

MapToItem
{ Input -> Input#b }
(MapFromItem

{$v -> Select
{op:integer-ge(fn:data(Step[@year](Input#b)), 2000)}
([b : $v])}

(TreeJoin[child::book]($cat)))

49

This plan is pretty straightforward – multiple steps over a se-

quence of catalogs is converted into a TreeJoin operator, and

the Select operator is pushed into the MapFromItem.

A lot more interesting when joins/group-bys are involved, but

also pretty tedious to read.

XQuery Processing Step 8 : Code Selection

XQuery
Parser

 Static
Typing

 Query
Normalization

 Query
Compiler

Syntactic
Rewritings

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery Processing

XQuery
 AST

Core
XQuery AST

Typed Core
XQuery AST

"Simplified"
Typed Core
XQuery AST

XML

 XQuery
 Program

XML Schema

 Logical
Query Plan

 Static
Analysis

Annotated
 Logical
Query Plan

I Step 8: Code Selection

I Algebraic operation mapped to physical implementation(s)

50

The last phase before evaluation is code selection, which takes a

particular logical operator, such as a Join, and selects a particular

implementation for that operator, such as SortMerge, HashJoin,

etc. The result is a physical query plan in which every operator

and function has been realized by a concrete implementation.

Newest part of compiler; no cost-based optimization yet. This

is where we are working right now, so I don’t have much to say.

XQuery Processing Step 9: Evaluation

XQuery
Parser

 Static
Typing

 Query
Normalization

 Query
Compiler

Syntactic
Rewritings

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery Processing

XQuery
 AST

Core
XQuery AST

Typed Core
XQuery AST

"Simplified"
Typed Core
XQuery AST

XML Schema

XML

 XQuery
 Program

 Logical
Query Plan

 Static
Analysis

Annotated
 Logical
Query Plan

I Output: Instance of Galax’s abstract XML data model

I Data model instance accessible via API or serialization

51

Evaluation takes a physical evaluation plan, and inputs, which

are either typed XML streams or instances of the XQuery data

model, and produces an instance of the XQuery data model.

The result can be accessed (and navigated) using the Galax data-

model API from a C, Java or O’Caml program, or the result can

be serialized into an XML document.

XML Schema Processing Architecture
XML
Schema XML

Parser

XML
Stream Type

Normalization
Schema
Import

Type AST

Core Type AST

Type
Compilation

Compiled Types

XML Schema Processing

XQuery
(Static Typing)

XML
(Validation)

I Analogous to XQuery processing model

I References: XQuery 1.0 Formal Semantics

“The Essense of XML”, POPL 2003, Siméon & Wadler

52

We’re almost done with the tour of Galax’s architecture.

The third processing model is for XML Schemata, and is analo-

gous to the XQuery processing model, but much simpler.

XML Schema has an XML syntax, so just as with any other XML

document, it first is parsed and yields an XML token stream.

The schema-import phase takes the XML stream of the schema

and produces the abstract-syntax tree of the XQuery types that

corresponds to the Schema. You can think of the XQuery type

language as a human-readable form of XML Schema.

Like expressions in the XQuery language, type expressions in the

XQuery type language have an implicit semantics. Type normal-

ization takes an XQuery type and makes the implicit semantics

in types explicit. For example, a generic type reference in an

XQuery type is normalized into a reference to a simple or a

complex type in a Core type.

The smaller, more orthogonal Core type language simplifies

static typing because an expression is annotated with a unique

type.

This processing model implements the formal definition of XML

Schema defined in the XQuery Formal Semantics, which is based

on the semantics first described in this 2003 POPL paper by Phil

and Jerome.

As an aside, this paper is probably one of the most technically

significant contributions to the XQuery working group.

Putting it all together

XML
Parser

XML
Stream Schema

Validation

XML
Instance
Document Data Model

Loading

Typed
XML Stream

XML
Stream

XML
Instance
Document

Typed
XML Stream

XQuery
Data Model

Export
Stream

Erase
TypesSerialization

XML
Schema XML

Parser

XML
Stream Type

Normalization
Schema
Import

Type AST

Core Type AST

Type
Compilation

Compiled Types

XQuery
Parser

 Static
Typing

 Query
Normalization

 Query
Compiler

Syntactic
Rewritings

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery
 AST

Core
XQuery AST

Typed Core
XQuery AST

"Simplified"
Typed Core
XQuery AST

 XQuery
 Program

XML Schema Processing

XML Processing

XQuery Processing
 Logical
Query Plan

 Static
Analysis

Annotated
 Logical
Query Plan

I Most code devoted to representation transformation

I Of 66,000 lines O’Caml, 7600 lines (12%) for evaluation

I O’Caml’s polymorphic algebraic types support disciplined program trans-

formation

53

When we put all three processing models together, you have the

complete picture of Galax’s architecture.

As you can probably guess from this picture, most of Galax’s

architecture is devoted to transforming representations of docu-

ments, schemas, and queries. In fact, only 12% of Galax’s code

(possibly a little more if we include the data model implementa-

tions) is devoted to query evaluation.

It is no accident that we chose O’Caml as our implementation

language. O’Caml, like all other ML languages, is a meta-

language, that is, a language for expressing and manipulating

other languages. In particular, O’Caml’s polymorphic algebraic

types are used virtually everywhere in Galax and guarantee that

the interfaces between phases are always well typed.

A common mistake when building a large compiler is to take

short cuts and coalesce phases that are logically separate.

For example, coalesing parsing and normalization is easy to do.

Sometimes this is done because there is a perceived cost in hav-

ing so many representations of one program. But the effect is

that the resulting architecture is less extensibile.

Since we went to so much trouble to build a very modular archi-

tecture, we want others to be able to contribute to its evolution

and to use it for their own experimentation. Essentially partition

the architecture at any point, externalize the representation at

that point, and re-consume it at that point. This gives us an

enormous degree of flexibility for ourselves and others to use part

of the system.

66,000 includes AST .mli interfaces and all lexer .mll and

source .ml files. Excludes all other interfaces. Total line

count is 179012.

Part IV

XML Processing

54

XML Processing Architecture

XML
Parser

XML
Stream Schema

Validation

XML
Instance
Document Data Model

Loading

Typed
XML Stream

XML
Stream

XML
Instance
Document

Typed
XML Stream

XQuery
Data Model

Export
Stream

Erase
TypesSerialization

XML Schema

XML Processing

XQuery
(Evaluation)

XQuery
(Evaluation)

I Deals with input/output of XML

I Deals with internal XML representations

I DOM-like (tree representation)

I SAX-like (Stream representation)

I XML representations might not be enough

I Need to tuples? (e.g., for relational optimization)

I Need for index-based representations?

55

XML Processing References

I Very little research references

I XML 1.0 Specification

I A lot of implementation experience

I XML Schema 1.0 Specification

I Much less implementation experience

I Paper at XIME-P’2004

I Theoretical papers on tree automata

I “Essence of XML” at POPL’2003

56

XQuery Data Model Representations

I Materialized XML trees:

I DOM-like, main-memory access

I Support for all XQuery data model operations

I Based on PSVI (I.e., contain type information)

I XQuery Data Model additions to XML:

I Atomic values (e.g., integer, string)

I Sequence (e.g., (1,<a/>,’’hello’’))

I Streamed XML trees:

I Stream of SAX events (open/close element, characters...)

I Stream of Typed SAX events (I.e., contain type informa-

tion)

I Pull streams instead of SAX push streams:

I Support open/next (cursor) interface

I Extended to support atomic values and sequences

57

XML Data Model Notations

I Materialized XML values: v1, ..., vn

I SAX events: e1, ..., en

I startElem(QName)

I endElem

I chars("This is text")

I Typed SAX events: te1, ..., ten

I startElem(QName,TypeAnnotation,Value)

I endElem

I chars("This is text")

I atomic(xs:integer,11)

I SAX streams: stream1, ..., streamn

I Typed SAX streams: tstream1, ..., tstreamn

58

Streaming operations: I/O

I Input / Output

I Parse : channel → stream

I Serialize : stream, channel → ()

I Example

s1 = Parse("<age>11</age>")

[=> startElem(age) ; chars("11") ; endElem]

Serialize(s1,stdout)

[=> <age>11</age>]

59

Streaming operations: Validation

I Typing

I Validate : stream , type → tstream

I Well-formed : stream → tstream

I Erase : tstream → stream

I Example

s1 = Parse("<age>11</age>")

[=> startElem(age) ; chars("11") ; endElem]

s2 = Validate(s1, element age of type xs:integer)

[=> startElem(age,xs:integer,11) ; chars("11") ; endElem]

s3 = Erase(s2)

[=> startElem(age) ; chars("11") ; endElem]

Serialize(s3,stdout)

[=> <age>11</age>]

60

Streaming validation

I Can be done!

I Relies on XML Schema constraints:

I One-unambiguous regular expressions

I Transitions in Glushkov automata are deterministic

I or Brozowski derivatives unambiguous

I Same element must have same type within a content model

I Requires a stack of content models

I Validation in a left-deep first traversal

61

Streaming validation

I Example:

declare element person of type Person;

declare type Person { (element name, element age)+ };

declare element name of type xs:string;

declare element age of type xs:integer

<person><name>John</name><age>33</age></person>

62

Streaming validation
startElem(person) --- element person of type Person

push(empty)
--> startElem(person,Person)

startElem(name) --- element name
push(element age,(element name, element age)*)

--> startElem(name,xs:string)

chars(’’John’’) --- xs:string
push(empty)

--> chars(‘‘John’’,xs:string(‘‘John’’)

endElem --- CHECK EMPTY IN TYPE empty
pop --> element age,(element name, element age)*

--> endElem

startElem(age) --- element age
push((element name, element age)*)

--> startElem(age,xs:integer)

chars(’’33’’) --- xs:integer
push(empty)

--> chars(‘‘33’’,xs:integer(33))

63

Streaming validation, cont’d
endElem --- CHECK EMPTY IN TYPE empty

pop --> (element name | element age)*
--> endElem

endElem --- CHECK EMPTY IN TYPE (element name | element age)*
pop --> empty

endElem

64

Data Model Materialization

I (De)Materialization

I Load : tstream → dm value

I Export : dm value → tstream

s1 = Parse("<age>11</age>")

[=> startElem(age) ; chars("11") ; endElem]

s2 = Validate(s1, element age of type xs:integer)

[=> startElem(age,xs:integer,11) ; chars("11") ; endElem]

v1 = Load(s2)

[=> element age of type xs:integer 11]

s3 = export(v1)

[=> startElem(age,xs:integer,11) ; chars("11") ; endElem]

65

XML Processing in Galax (1)

I Abstract Syntax Trees

XML
Parser

XML
Stream Schema

Validation

XML
Instance
Document Data Model

Loading

Typed
XML Stream

XML
Stream

XML
Instance
Document

Typed
XML Stream

XQuery
Data Model

Export
Stream

Erase
TypesSerialization

XML Schema

XML Processing

XQuery
(Evaluation)

XQuery
(Evaluation)

66

XML Processing in Galax (1)

I Abstract Syntax Trees

XML
Parser

XML
Stream Schema

Validation

XML
Instance
Document Data Model

Loading

Typed
XML Stream

XML
Stream

XML
Instance
Document

Typed
XML Stream

XQuery
Data Model

Export
Stream

Erase
TypesSerialization

XML Schema

XML Processing

XQuery
(Evaluation)

XQuery
(Evaluation)./streaming/sax_types.mli./base/galax_io.mli ./dm/dm.mli

67

XML Processing in Galax (2)

I Parsing and serialization

XML
Parser

XML
Stream Schema

Validation

XML
Instance
Document Data Model

Loading

Typed
XML Stream

XML
Stream

XML
Instance
Document

Typed
XML Stream

XQuery
Data Model

Export
Stream

Erase
TypesSerialization

XML Schema

XML Processing

XQuery
(Evaluation)

XQuery
(Evaluation)

./lexing/*

./parsing/*

./parsing/parse_top.mli

./serialization/*

./serialization/serialization.mli

68

XML Processing in Galax (3)

I Stream validation and erasure

XML
Parser

XML
Stream Schema

Validation

XML
Instance
Document Data Model

Loading

Typed
XML Stream

XML
Stream

XML
Instance
Document

Typed
XML Stream

XQuery
Data Model

Export
Stream

Erase
TypesSerialization

XML Schema

XML Processing

XQuery
(Evaluation)

XQuery
(Evaluation)

./schema/*

./schema/validation.mli

./streaming/stream_ops.mli

69

XML Processing in Galax (4)

I Document loading and export

XML
Parser

XML
Stream Schema

Validation

XML
Instance
Document Data Model

Loading

Typed
XML Stream

XML
Stream

XML
Instance
Document

Typed
XML Stream

XQuery
Data Model

Export
Stream

Erase
TypesSerialization

XML Schema

XML Processing

XQuery
(Evaluation)

XQuery
(Evaluation)

./streaming/export_dm.mli

./datamodel/galax_load.mli

70

Part V

XQuery Processing

71

XML Query Processing References

I Huge wealth of references

I SQL references

I Programming language references

I Function inlining

I Tail-recursion optimization

I etc.

I XQuery/XPath references:

I Formal Semantics on XQuery normalization

I XPath joins (10+ papers on twigs, staircase joins)

I XPath streaming

I XML algebras (TAX, etc.)

I Indexes (Dataguides, etc)

72

XQuery Processing in Galax (1)

I Abstract Syntax Trees

XQuery
Parser

 Static
Typing

 Query
Normalization

Query
 AST

Static
Analysis

 Query
Compiler

Syntactic
Rewritings

Typed
Core
Query AST

Core
Query AST

"Simplified"
Typed Core
Query AST

Annotated
Typed Core
Query AST

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Logical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery Processing

XML Schema

XML

 XQuery
 Program

./ast/xquery_ast.mli

./ast/xquery_core_ast.mli

./ast/xquery_algebra_ast.mli

73

XQuery Processing in Galax (2)

I Parsing

XQuery
Parser

 Static
Typing

 Query
Normalization

Query
 AST

 Query
Compiler

Syntactic
Rewritings

Typed
Core
Query AST

Core
Query AST

"Simplified"
Typed Core
Query AST

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery Processing

XML Schema

XML

 XQuery
 Program

./lexing/*

./parsing/xquery_parser.mly

./parsing/parse_top.mli

Static
Analysis

 Logical
Query Plan

Annotated
 Logical
Query Plan

74

XQuery Normalization

I Fully Specified in XQuery 1.0 and XPath 2.0 Formal Semantics

I Maintained as normative by W3C XML Query working group

75

XQuery Processing in Galax (3)

I Normalization

XQuery
Parser

 Static
Typing

 Query
Normalization

Query
 AST

Static
Analysis

 Query
Compiler

Syntactic
Rewritings

Typed
Core
Query AST

Core
Query AST

"Simplified"
Typed Core
Query AST

Annotated
Typed Core
Query AST

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Logical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery Processing

XML Schema

XML

 XQuery
 Program

./normalization/*

./normalization/norm_top.mli

76

XQuery Processing in Galax (4)

I Static Typing

XQuery
Parser

 Static
Typing

 Query
Normalization

Query
 AST

Static
Analysis

 Query
Compiler

Syntactic
Rewritings

Typed
Core
Query AST

Core
Query AST

"Simplified"
Typed Core
Query AST

Annotated
Typed Core
Query AST

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Logical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery Processing

XML Schema

XML

 XQuery
 Program

./typing/*

./typing/typing.mli

77

XQuery “Syntactic” Rewriting

I Only a few references

I Dana’s tutorial

I Monad laws

I Fernandez et al “A semi-monad for semistructured data”,

ICDT’2001

I Additional rewritings:

I Choi et al “The XQuery Formal Semantics: A Foundation

for Implementation and Optimization”, technical report, 2002.

78

XQuery Processing in Galax (5)

I Rewriting and static analysis

XQuery
Parser

 Static
Typing

 Query
Normalization

Query
 AST

Static
Analysis

 Query
Compiler

Syntactic
Rewritings

Typed
Core
Query AST

Core
Query AST

"Simplified"
Typed Core
Query AST

Annotated
Typed Core
Query AST

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Logical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery Processing

XML Schema

XML

 XQuery
 Program

./rewriting/*

./cleaning/*

./analysis/*

79

XML Query query processing references

I Huge wealth of references

I SQL references

I OQL references

I XQuery/XPath references:

I XPath joins (10+ papers on twigs, staircase joins)

I XML algebras (TAX, etc.)

I Query decorrelation/unnesting

I In Galax: May et al, ICDE’2004

I Indexes (Dataguides, etc)

I In Galax: Torsten et al “Accelerating XPath Location

Steps”

80

References on streaming
I BEA’s XQuery implementation:

I “The BEA/XQRL Streaming XQuery Processor”. Florescu

et al, VLDB 2003

I XPath streaming (10+ papers)

I E.g., “Streaming XPath Processing with Forward and Back-

ward Axes” Barton et al, ICDE’2003.

I In Galax: Marian and Siméon “Document projection”

I SAX-based element construction

I Probably similar to “Algebraic XML Construction in Natix”,

WISE’2001.

I In Galax: streaming element construction as part of the

algebra (see later)

I In Galax: streaming validation (see earlier)

81

Galax’s Hybrid Algebra for XQuery

I Database algebra (nested relational)

I Tuple-based processing

I Focus on Join / Grouping / Ordering

I Efficient over physical indexes on disk

I Partial support for pipelining

I Extended with streaming operation

I SAX-based processing

I Efficient over files, and network messages

I Direct support for pipelining

I Finally:

I Operations to go between materialized and streaming XML

82

Physical Data Model Extensions

I In addition to XML data model

I Tuples:

I Fixed-sized records with fields containing trees

I Support access to given field

I Either materialized

I Tables, like in relational!

I Or streamed

I Support open/next (cursor) interface

83

Physical Data Model Notations

I Tuples:

I Tuple creation: [a1 : v1, ..., an : vn]

I Tuple field access: B#a1

I Tuple concatenation: T1 ++ T2

84

Basic Streaming operations

I Input / Output

I Parse : channel → stream

I Serialize : stream, channel → ()

I Typing

I Validate : stream , type → tstream

I Well-formed : stream → tstream

I Erase : tstream → stream

I (De)Materialization

I Load : tstream → dm value

I Export : dm value → tstream

85

Advanced streaming operations

I StreamNestedLoop:

StreamNestedLoop(Var,Expr,StreamExpr)

I Evaluates input expression Expr

I Iterates over results, binding variable Var

I Processes the StreamExpr for each binding of variable

I Builds the output in a streamed fashion

I StreamXPath:

I Processes fragments of XPath in a streaming fashion

I Existing algorithms in literature

I E.g., Barton et al, ICDE’2003

I StreamProjection:

I Removes unnecessary parts of the stream based on the query

86

Streaming operations: Element construction

I Streams with holes

I Element constructor:
SmallExp ::= element QName { SmallExp }

| SmallExp "," SmallExp

| [HOLE]

I Creates a ’small stream’ with holes:

I SmallStream : SmallExp → [h1,...,hn] stream

I Stream composition

I StreamCompose : [h1,..,hk] stream , [j1,..,jl] stream

→ [j1,..,jl,h2..,hn] stream

87

Element Construction: Example

I Back to the sample query on books:

for $author in distinct-values($cat/book/author),
let $books := $cat/book[@year >= 2000 and author = $author]
return

<total-sales>
<author> { $author } </author>
<count> { count($books) } </count>

</total-sales>

I Compiled to the following query plan:

StreamNestedLoop($tu, Scan([author : ...,

StreamCompose

StreamCompose(

SmallStream(element total-sale {

element author { [HOLE] },

element count { [HOLE] } }),

Export(GETVar($tu).author)),

Export(count(GETVar($tu).books))))

88

Document Projection

“Document Projection”

I Similar to relational projection

I One of key operations

I Prunes unnecessary part of the data

I Essential for memory management

I Specific problems related to XML

I Projection must operate on trees

I Requires analysis of the query

I Need to address XQuery complexity

I Implementation may operate directly on SAX streams

89

Document Projection: The Intuition

I Given a query:

for $b in /site/people/person[@id="person0"]

return $b/name

I Most nodes in the input document(s) not required

I Projection operation removes unnecessary nodes

I How it works Static analysis of the query

I Projection defined by set of paths

I Static analysis infers set of paths used within a query

I Example here:

/site/people/person

/site/people/person/@id

/site/people/perso/name

90

Document Projection: The Intuition
<site>

<regions>...</regions>
<people>

...
<person id=”person120”>

<name>Wagar Bougaut</name>
<emailaddress>mailto:Bougaut@wgt.edu</emailaddress>

</person>
<person id=”person121”>

<name>Waheed Rando</name>
<emailaddress>mailto:Rando@pitt.edu</emailaddress>
<address>

<street>32 Mallela St</street>
<city>Tucson</city>
<country>United States</country>
<zipcode>37</zipcode>

</address>
<creditcard>7486 5185 1962 7735</creditcard>
<profile income=”59224.09”>

...

I For that query, less than 2% of the original document!

91

Document Projection: Query Analysis

I Analyzing XQuery is difficult:

I Deal with variables

I Deal with complex expressions

I Deal with compositionality

I Analysis must deal with all of XQuery

I Performed on XQuery core (smaller instruction set)

I Idea of the analysis:

I For an expression Expr, compute the paths reaching the

nodes required to evaluate that expression

I Notation:

Expr ⇒ Paths

92

Maximal Document Size
I Queries:

I Query 3: Navigation, single iteration with selection and

element construction

I Query 14: Non-selective path query with contains predicate

I Query 15: Long, very selective path expression

Configuration A B C
Query 3 NoProj 33Mb 220Mb 520Mb

OptimProj 1Gb 1.5Gb 1.5Gb
Query 14 NoProj 20Mb 20Mb 20Mb

OptimProj 100Mb 100Mb 100Mb
Query 15 NoProj 33Mb 220Mb 520Mb

OptimProj 1Gb 2Gb 2Gb

I All queries operate on 100Mb or more

I Most navigation/selection queries work up to 1Gb document

I For more than 1Gb, scan of the document becomes a bottle-

neck

93

Database Algebra
I Standard database algebraic operators:

I Scan: Creates a sequence of tuples

I Map: iterate over a sequences of tuples

I Select: Selects a sub-sequence based on a predicate

I Join: Joins two sequences of tuples

I GroupBy: Performs re-grouping of tuples based on a criteria

GroupBy(Scan(T in AuthorTable),

T.NAME,

COUNT : count(PARTITION))

I “Regroup the tuples in the authors table by their name

and count the number of tuple in each corresponding partition,

putting the result in the COUNT collumn.”

94

Standard Algebraic Optimization
I Pushing a selection:

Select(Join(Scan(A2 in AuthorTable),

Scan(B2 in BookTable),

A2.bid = B2.bid),

B2.year >= 2003)

==

Join(Scan(A2 in AuthorTable),

Select(Scan(B2 in BookTable),

B2.year >= 2003),

A2.bid = B2.bid)

I Removes unnecessary tuples as early as possible

95

Standard Algebraic Optimization, cont’d
I Unnest a query into a group-by:

Map(AUTHOR ;

distinct(Project(A1.name, Scan(A1 in AuthorTable))),

count(Select(Scan(A2 in AuthorTable),

AUTHOR = A2.name)))

==

GroupBy(

Scan(A1 in AuthorTable),

A1.name,

COUNT : count(PARTITION))

I Requires only one scan of the AuthorTable

96

DB optim adapted to XQuery
I Example with a simple join:

for $b in doc("bib.xml")/bib//book,

$a in doc("reviews.xml")//entry

where $b/title = $a/title

return ($b/title,$a/price,$b/price)

I Step 1. normalization:

for $b in doc("bib.xml")/bib//book return

for $a in doc("reviews.xml")//entry return

if ($b/title = $a/title) then

($b/title,$a/price,$b/price)

else

()

97

DB optim adapted to XQuery, cont’d
I Normalized query:

for $b in doc("bib.xml")/bib//book return

for $a in doc("reviews.xml")//entry return

if ($b/title = $a/title) then

($b/title,$a/price,$b/price)

else ()

I Compiled into tuple-based algebra as:

for-tuple $t3 in
(for-tuple $t2 in

(for-tuple $t1 in
(for-tuple $t0 in []
return

for $b in doc("bib.xml")/bib//book return [b : $b] ++ $t0)
return

for $a in doc("reviews.xml")//entry return $t1 ++ [a : $a])
return

if ($t2#b/title = $t2#a/title) then $t2 else ())
return

($b/title,$a/price,$b/price)

I Variables turned into ’fields’ in tuples
I for-tuple corresponds to Map, implemented as a nested loop.

98

DB optim adapted to XQuery, cont’d
I Naive algebraic plan:

for-tuple $t3 in
(for-tuple $t2 in

(for-tuple $t1 in
(for-tuple $t0 in []
return

for $b in doc("bib.xml")/bib//book return [b : $b] ++ $t0)
return

for $a in doc("reviews.xml")//entry return $t1 ++ [a : $a])
return if ($t2#b/title = $t2#a/title) then $t2 else ())

return ($b/title,$a/price,$b/price)

I Can be turned onto a join:

for-tuple $t3 in
(Join ($b/title = $a/title),

$b in doc("bib.xml")/bib//book,
$a in doc("reviews.xml")//entry,
[b : $b ; a : $a])

return
($b/title,$a/price,$b/price)

I Join and for-tuple here can be implemented through pipelin-

ing

99

DB optim adapted to XQuery, cont’d
I To relate things clearly:

I Operations above are some of the basic operations in the

algebra proposed by Moerkotte et al.

X_a:E2(E1) == for-tuple $a in E1 return E2

I Selection is implemented above as a map:

X_a:E2(E1) == for-tuple $a in E1 return E2

Sigma_p(E) == X_a:(if p then a else ())(E)

== for-tuple $a in E return (if p then a else ())

I etc.

I Other standard algebraic operations and rewritings apply di-

rectly.

100

More on Nested Queries
I NRA / OQL optimizations

I “Algebraic Optimization of Object-Oriented Query Lan-

guages”, Beeri and Kornatzky, TCS 116(1&2), aug 1993.

I “Nested Queries in Object Bases”, Cluet and Moerkotte,

DBPL’1993.

I Adapted to XML:

I ”XML Queries and Algebra in the Enosys Integration Plat-

form”, Papakonstantinou et al.

I ”Three Cases for Query Decorrelation in XQuery” May et

al, XSym’2003 + ICDE’2004.

101

XQuery Processing in Galax (6)

I Algebraic compilation

XQuery
Parser

 Static
Typing

 Query
Normalization

Query
 AST

Static
Analysis

 Query
Compiler

Syntactic
Rewritings

Typed
Core
Query AST

Core
Query AST

"Simplified"
Typed Core
Query AST

Annotated
Typed Core
Query AST

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Logical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery Processing

XML Schema

XML

 XQuery
 Program

./compile/*

./compile/compile_top.mli

102

XQuery Processing in Galax (7)

I Algebraic optimization

XQuery
Parser

 Static
Typing

 Query
Normalization

Query
 AST

Static
Analysis

 Query
Compiler

Syntactic
Rewritings

Typed
Core
Query AST

Core
Query AST

"Simplified"
Typed Core
Query AST

Annotated
Typed Core
Query AST

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Logical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery Processing

XML Schema

XML

 XQuery
 Program

./optimization/*

./optimization/optimization_top.mli

103

XQuery Processing in Galax (8)

I Code selection

XQuery
Parser

 Static
Typing

 Query
Normalization

Query
 AST

Static
Analysis

 Query
Compiler

Syntactic
Rewritings

Typed
Core
Query AST

Core
Query AST

"Simplified"
Typed Core
Query AST

Annotated
Typed Core
Query AST

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Logical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery Processing

XML Schema

XML

 XQuery
 Program

./algebra/*

./algebra/code_selection.mli

104

XQuery Processing in Galax (9)

I Evaluation

XQuery
Parser

 Static
Typing

 Query
Normalization

Query
 AST

Static
Analysis

 Query
Compiler

Syntactic
Rewritings

Typed
Core
Query AST

Core
Query AST

"Simplified"
Typed Core
Query AST

Annotated
Typed Core
Query AST

Evaluation
 Engine

 Code
Selection

Physical
Query Plan

Logical
Query Plan

Query
Optimizer

Optimized
Logical
Query Plan

XQuery Processing

XML Schema

XML

 XQuery
 Program

./evaluation/*

./evaluation/evaluation_top.mli

105

Part VI

Conclusions

106

Completeness—New Research & Colleagues
I Implementation language for other DSLs

I GalaTex: XQuery Full-Text Language

I First implementation of full-text extension language

I http://www.galaxquery.org/galatex

Sihem Amer-Yahia, Emiran Curmola, Phil Brown

I Distributed XQuery

I Trust management in peer-to-peer systems

Grid resource management

I Queries migrate to data

Trevor Jim

107

GalaTex – implement W3C’s full-text extensions to XQuery ;

prototype language & features. Very exciting project. Intersec-

tion of information-retrieval and traditional databases.

Web services — explore XQuery as Web services programming

language

Both these projects required the whole language – modules in

particular.

Wouldn’t have happened without completeness.

Extensibility—More Research & Colleagues

I XQuery!

I Extension to language syntax, normalization, semantics

Christopher Ré, Gargi Sur, Joachim Hammer

I Querying Ad Hoc Data Sources

I Query-able XML views of semi-structured, ad hoc data

I “PADX: Query Large-scale Ad Hoc Data with XQuery”, PLAN-X’06

http://www.padsproj.org

Kathleen Fisher, Joel Gottlieb, Bob Gruber, Yitzhak Mandel-

baum, David Walker

108

Performance—You get the idea
I Complete XQuery algebra, logical optimizations

Unifying framework of tuple & tree operators

I Physical algorithms

I Comprehensive comparison of algorithms for path evaluation

Stair-case join, twig join, streaming, et al

I “Streaming” physical plans

Identify necessary conditions & integrate existing techniques

“Projecting XML Documents”, VLDB 2003, Amélie Marian

I Christopher Ré, Philippe Michiels, Michael Stark

109

A few things we have left behind

I Namespaces: tricky and painful, but essential

I See ./namespace/*

I Built-in library of functions (a few hundreds)

I See ./stdlib/*

I User facing code: APIs, command-line tools

I See ./galapi/caml/*

I See ./galapi/c/*

I See ./galapi/java/*

I Documentation

I See ./doc/*

I Testing!!

110

A few things added to the mix

I XML updates

I Extension to the language syntax, normalization, etc.

I “An XQuery-Based Language for Processing Updates in

XML”, PLAN-X’2004

I Storage and indexes

I See previous talk by Maurice van Keulen and Torten Grust

I (Variant) implementation available in Galax

I See ./jungledm/*

I “The Simplest XML Storage Manager Ever”, XIME-P’2004

I Web services support

I How to call a Web service from a Query

I Interface with SOAP and WSDL

I See ./wsdl/*, ./extensions/apache/*

I “XQuery at your Web Service”, WWW’2004

111

Lessons Learned: Development

I Software-engineering principles are important!

I Formal models are good basis for initial architectural design

I Design, implementation, refinement are continuous

I Development infrastructure matters!

I Choose the right tool for the job

I O’Caml for query compiler; Java (and C) for APIs

I Team matters even more!

I Work with people for 4 years

I Some piece of code survives long

E.g., FSA code written by Byron Choi in July 2001

I You can’t make it if you don’t have fun!

112

Lessons Learned: Users

I Having users is amazing

I They are smarter than you

I They do crazy things with your software

I They do not complain (well sometimes...)

I You can learn a lot from their feedback

I Examples of Galax users

I Lucent’s UMTS

I Universities for teaching

I Small projects (e.g., Query music in XML)

I Ourselves (e.g., Mary in PADS, Jérôme in LegoDB)...

113

Lessons Learned: Research

I Where is research in all this?
I 85% is not research
I 15% is research

I Some interesting research based on Galax
I Compilation, optimization: ICDE’06, VLDB’03
I Static typing: POPL’03, ICDT’01
I Indexing, storage: XIME-P’04
I Extensibility: PLAN-X’06/04, WWW’04, SIGMOD’04

I But the 15% is interesting research

I It has very practical impact
I You can implement it for real

I Problems are often original
I How to deal with sorting by document order
I Document projection
I etc.

114

Where we are ... Where we want to be
I Galax Version 0.6.0 (February 2006)

I Conformant implementation of XQuery 1.0

8,000+ conformance test queries

I Algebraic query plans, logical optimizations,

& join algorithms, static typing

I Source code & binaries for Linux, MacOS, Solaris, Win-

dows(MinGW)

I Gold standard of open-source XQuery implementations

I Implementation of choice for experimentation & research

I Visit us at http://www.galaxquery.org

115

Thanks! to Galax Team, Past and Present
Byron Choi, University of Pennsylvania

Vladimir Gapeyev, University of Pennsylvania

Jan Hidders, Universiteit Antwerpen

Amélie Marian, Columbia University

Philippe Michiels, Universiteit Antwerpen

Roel Vercammen, Universiteit Antwerpen

Nicola Onose, University of California, San Diego

Douglas Petkanics, University of Pennsylvania

Christopher Ré, University of Washington

Michael Stark, Technische Universität Darmstadt

Gargi Sur, University of Florida

Avinash Vyas, Lucent Bell Laboratories

Philip Wadler, University of Edinburgh

116

